Shezaf Jonathan Z, Santana Catherine G, Ortiz Eliezer, Meyer Cole C, Liu Peng, Sakata Ken, Huang Kuo-Wei, Krische Michael J
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
J Am Chem Soc. 2024 Mar 27;146(12):7905-7914. doi: 10.1021/jacs.4c01857. Epub 2024 Mar 13.
Experimental and computational studies illuminating the factors that guide metal-centered stereogenicity and, therefrom, selectivity in transfer hydrogenative carbonyl additions of alcohol proelectrophiles catalyzed by chiral-at-metal-and-ligand octahedral d metal ions, iridium(III) and ruthenium(II), are described. To augment or invert regio-, diastereo-, and enantioselectivity, predominantly one from among as many as 15 diastereomeric-at-metal complexes is required. For iridium(III) catalysts, cyclometalation assists in defining the metal stereocenter, and for ruthenium(II) catalysts, iodide counterions play a key role. Whereas classical strategies to promote selectivity in metal catalysis aim for high-symmetry transition states, well-defined low-symmetry transition states can unlock selectivities that are otherwise difficult to achieve or inaccessible.
本文描述了实验和计算研究,这些研究揭示了在手性金属和配体八面体d金属离子(铱(III)和钌(II))催化的醇亲电试剂转移氢化羰基加成反应中,引导以金属为中心的立体化学以及由此产生的选择性的因素。为了增强或反转区域选择性、非对映选择性和对映选择性,在多达15种金属非对映异构体络合物中,通常需要其中一种。对于铱(III)催化剂,环金属化有助于确定金属立体中心,而对于钌(II)催化剂,碘离子抗衡离子起着关键作用。虽然在金属催化中促进选择性的经典策略旨在实现高对称性过渡态,但定义明确的低对称性过渡态可以解锁其他难以实现或无法获得的选择性。
Acc Chem Res. 2023-5-2
Nat Commun. 2014-7-29
Inorg Chem. 2023-8-7
Chem Rev. 2023-4-26