Suppr超能文献

通过组合代谢工程和贝叶斯优化在酿酒酵母中增强 S-腺苷-L-甲硫氨酸的合成。

Enhanced synthesis of S-adenosyl-L-methionine through combinatorial metabolic engineering and Bayesian optimization in Saccharomyces cerevisiae.

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.

National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China.

出版信息

Biotechnol J. 2024 Mar;19(3):e2300650. doi: 10.1002/biot.202300650.

Abstract

S-Adenosyl-L-methionine (SAM) is a substrate for many enzyme-catalyzed reactions and provides methyl groups in numerous biological methylations, and thus has vast applications in the agriculture and medical field. Saccharomyces cerevisiae has been engineered as a platform with significant potential for producing SAM, but the current production has room for improvement. Thus, a method that consists of a series of metabolic engineering strategies was established in this study. These strategies included enhancing SAM synthesis, increasing ATP supply, down-regulating SAM metabolism, and down-regulating competing pathway. After combinatorial metabolic engineering, Bayesian optimization was conducted on the obtained strain C262P6S to optimize the fermentation medium. A final yield of 2972.8 mg·L at 36 h with 29.7% of the L-Met conversion rate in the shake flask was achieved, which was 26.3 times higher than that of its parent strain and the highest reported production in the shake flask to date. This paper establishes a feasible foundation for the construction of SAM-producing strains using metabolic engineering strategies and demonstrates the effectiveness of Bayesian optimization in optimizing fermentation medium to enhance the generation of SAM.

摘要

S-腺苷-L-蛋氨酸(SAM)是许多酶促反应的底物,为许多生物甲基化提供甲基,因此在农业和医学领域有广泛的应用。酿酒酵母已被工程化为一个具有生产 SAM 巨大潜力的平台,但目前的产量还有改进的空间。因此,本研究建立了一种由一系列代谢工程策略组成的方法。这些策略包括增强 SAM 合成、增加 ATP 供应、下调 SAM 代谢和下调竞争途径。在组合代谢工程之后,对获得的 C262P6S 菌株进行贝叶斯优化,以优化发酵培养基。在摇瓶中最终实现了 36 小时 2972.8 mg·L 的产量,L-甲硫氨酸转化率为 29.7%,比其亲本菌株高 26.3 倍,是迄今为止摇瓶中报道的最高产量。本文为使用代谢工程策略构建 SAM 生产菌株奠定了可行的基础,并证明了贝叶斯优化在优化发酵培养基以增强 SAM 生成方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验