Zhang Ju-An, Chao Yi, Xiao Xuedong, Luo Shuai, Chen Wenzhuo, Tian Wei
Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
Angew Chem Int Ed Engl. 2024 May 13;63(20):e202402760. doi: 10.1002/anie.202402760. Epub 2024 Apr 5.
The phenomenon of polymorphism is ubiquitous in nature, the controlled manipulation of which not only increases our ontological understanding of nature but also facilitates the conceptualization and realization of novel functional materials. However, achieving targeted polymorphism in supramolecular assemblies (SAs) remains a formidable challenge, largely because of the constraints inherent in controlling the specific binding motifs of noncovalent interactions. Herein, we propose self-adaptive aromatic cation-π binding motifs to construct polymorphic SAs in both the solid and solution states. Using distinct discrete cation-π-cation and long-range cation-π binding motifs enables control of the self-assembly directionality of a C-symmetric bifunctional monomer, resulting in the successful formation of both two-dimensional and three-dimensional crystalline SAs (2D-CSA and 3D-CSA). The differences in the molecular packing of 3D-CSA compared with that of 2D-CSA significantly improve the charge separation and carrier mobility, leading to enhanced photocatalytic activity for the aerobic oxidation of thioanisole to methyl phenyl sulfoxide (yield of 99 % vs 57 %). 2D-CSA, which has a vertical extended structure with favorable stronger interaction with toluene though face-to-face cation-π interactions than methylcyclohexane, shows higher toluene/methylcyclohexane separation efficiency than 3D-CSA (96.9 % for 2D-CSA vs 56.3 % for 3D-CSA).
多态现象在自然界中普遍存在,对其进行可控操纵不仅能增进我们对自然本质的理解,还能促进新型功能材料的概念化与实现。然而,在超分子组装体(SAs)中实现靶向多态性仍然是一项艰巨的挑战,这主要是由于控制非共价相互作用的特定结合基序时存在固有限制。在此,我们提出自适应芳香阳离子-π结合基序,以在固态和溶液态构建多态超分子组装体。使用不同的离散阳离子-π-阳离子和长程阳离子-π结合基序能够控制C对称双功能单体的自组装方向性,从而成功形成二维和三维晶体超分子组装体(2D-CSA和3D-CSA)。与2D-CSA相比,3D-CSA分子堆积的差异显著改善了电荷分离和载流子迁移率,导致苯甲硫醚有氧氧化为苯甲亚砜的光催化活性增强(产率分别为99%和57%)。2D-CSA具有垂直延伸结构,通过面对面阳离子-π相互作用与甲苯的相互作用比与甲基环己烷的相互作用更强,其甲苯/甲基环己烷分离效率高于3D-CSA(2D-CSA为96.9%,3D-CSA为56.3%)。