Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Acc Chem Res. 2022 Apr 19;55(8):1171-1182. doi: 10.1021/acs.accounts.2c00068. Epub 2022 Mar 28.
Supramolecular assembly is commonly driven by noncovalent interactions (e.g., hydrogen bonding, electrostatic, hydrophobic, and aromatic interactions) and plays a predominant role in multidisciplinary research areas ranging from materials design to molecular biology. Understanding these noncovalent interactions at the molecular level is important for studying and designing supramolecular assemblies in chemical and biological systems. Cation-π interactions, initially found through their influence on protein structure, are generally formed between electron-rich π systems and cations (mainly alkali, alkaline-earth metals, and ammonium). Cation-π interactions play an essential role in many biological systems and processes, such as potassium channels, nicotinic acetylcholine receptors, biomolecular recognition and assembly, and the stabilization and function of biomacromolecular structures. Early fundamental studies on cation-π interactions primarily focused on computational calculations, protein crystal structures, and gas- and solid-phase experiments. With the more recent development of spectroscopic and nanomechanical techniques, cation-π interactions can be characterized directly in aqueous media, offering opportunities for the rational manipulation and incorporation of cation-π interactions into the design of supramolecular assemblies. In 2012, we reported the essential role of cation-π interactions in the strong underwater adhesion of Asian green mussel foot proteins deficient in l-3,4-dihydroxyphenylalanine (DOPA) via direct molecular force measurements. In another study in 2013, we reported the experimental quantification and nanomechanics of cation-π interactions of various cations and π electron systems in aqueous solutions using a surface forces apparatus (SFA).Over the past decade, much progress has been achieved in probing cation-π interactions in aqueous solutions, their impact on the underwater adhesion and cohesion of different soft materials, and the fabrication of functional materials driven by cation-π interactions, including surface coatings, complex coacervates, and hydrogels. These studies have demonstrated cation-π interactions as an important driving force for engineering functional materials. Nevertheless, compared to other noncovalent interactions, cation-π interactions are relatively less investigated and underappreciated in governing the structure and function of supramolecular assemblies. Therefore, it is imperative to provide a detailed overview of recent advances in understanding of cation-π interactions for supramolecular assembly, and how these interactions can be used to direct supramolecular assembly for various applications (e.g., underwater adhesion). In this Account, we present very recent advances in probing and applying cation-π interactions for mussel-inspired supramolecular assemblies as well as their structural and functional characteristics. Particular attention is paid to experimental characterization techniques for quantifying cation-π interactions in aqueous solutions. Moreover, the parameters responsible for modulating the strengths of cation-π interactions are discussed. This Account provides useful insights into the design and engineering of smart materials based on cation-π interactions.
超分子组装通常由非共价相互作用(例如氢键、静电、疏水和芳香相互作用)驱动,在从材料设计到分子生物学的多个跨学科研究领域中发挥着重要作用。了解这些分子水平上的非共价相互作用对于研究和设计化学和生物系统中的超分子组装至关重要。阳离子-π 相互作用最初是通过它们对蛋白质结构的影响而发现的,通常是在富电子π系统和阳离子(主要是碱金属、碱土金属和铵)之间形成的。阳离子-π 相互作用在许多生物系统和过程中起着重要作用,例如钾通道、烟碱型乙酰胆碱受体、生物分子识别和组装以及生物大分子结构的稳定和功能。早期对阳离子-π 相互作用的基础研究主要集中在计算计算、蛋白质晶体结构以及气固相实验上。随着最近光谱和纳米力学技术的发展,可以直接在水介质中对阳离子-π 相互作用进行表征,为合理操纵和将阳离子-π 相互作用纳入超分子组装的设计提供了机会。2012 年,我们通过直接分子力测量报告了阳离子-π 相互作用在缺乏 l-3,4-二羟基苯丙氨酸(DOPA)的亚洲贻贝足部蛋白在水下强附着力中的重要作用。在 2013 年的另一项研究中,我们使用表面力仪 (SFA) 报告了在水溶液中各种阳离子和π电子系统的阳离子-π 相互作用的实验量化和纳米力学。在过去的十年中,在探测水溶液中的阳离子-π 相互作用、它们对不同软物质水下附着力和内聚力的影响以及受阳离子-π 相互作用驱动的功能材料的制造方面取得了很大进展,包括表面涂层、复杂共凝聚物和水凝胶。这些研究表明阳离子-π 相互作用是工程功能材料的重要驱动力。然而,与其他非共价相互作用相比,阳离子-π 相互作用在控制超分子组装的结构和功能方面的研究相对较少,也没有得到足够的重视。因此,有必要详细概述近年来对理解超分子组装中阳离子-π 相互作用的最新进展,以及如何将这些相互作用用于指导各种应用(例如水下附着力)的超分子组装。在本报告中,我们介绍了在贻贝启发的超分子组装中探测和应用阳离子-π 相互作用的最新进展及其结构和功能特征。特别关注用于量化水溶液中阳离子-π 相互作用的实验表征技术。此外,还讨论了调节阳离子-π 相互作用强度的参数。本报告为基于阳离子-π 相互作用的智能材料的设计和工程提供了有用的见解。