Suppr超能文献

慢性阻塞性肺疾病(COPD)具有物理意义的替代数据

Physically Meaningful Surrogate Data for COPD.

作者信息

Davies Harry J, Hammour Ghena, Xiao Hongjian, Bachtiger Patrik, Larionov Alexander, Molyneaux Philip L, Peters Nicholas S, Mandic Danilo P

机构信息

Department of Electrical and Electronic EngineeringImperial College London SW7 2BX London U.K.

National Heart and Lung InstituteImperial College London SW7 2BX London U.K.

出版信息

IEEE Open J Eng Med Biol. 2024 Jan 31;5:148-156. doi: 10.1109/OJEMB.2024.3360688. eCollection 2024.

Abstract

The rapidly increasing prevalence of debilitating breathing disorders, such as chronic obstructive pulmonary disease (COPD), calls for a meaningful integration of artificial intelligence (AI) into respiratory healthcare. Deep learning techniques are "data hungry" whilst patient-based data is invariably expensive and time consuming to record. To this end, we introduce a novel COPD-simulator, a physical apparatus with an easy to replicate design which enables rapid and effective generation of a wide range of COPD-like data from healthy subjects, for enhanced training of deep learning frameworks. To ensure the faithfulness of our domain-aware COPD surrogates, the generated waveforms are examined through both flow waveforms and photoplethysmography (PPG) waveforms (as a proxy for intrathoracic pressure) in terms of duty cycle, sample entropy, FEV/FVC ratios and flow-volume loops. The proposed simulator operates on healthy subjects and is able to generate FEV/FVC obstruction ratios ranging from greater than 0.8 to less than 0.2, mirroring values that can observed in the full spectrum of real-world COPD. As a final stage of verification, a simple convolutional neural network is trained on surrogate data alone, and is used to accurately detect COPD in real-world patients. When training solely on surrogate data, and testing on real-world data, a comparison of true positive rate against false positive rate yields an area under the curve of 0.75, compared with 0.63 when training solely on real-world data.

摘要

慢性阻塞性肺疾病(COPD)等使人衰弱的呼吸障碍的患病率迅速上升,这就需要将人工智能(AI)有意义地整合到呼吸保健中。深度学习技术 “数据饥渴”,而基于患者的数据记录起来总是既昂贵又耗时。为此,我们推出了一种新型的慢性阻塞性肺疾病模拟器,这是一种设计易于复制的物理装置,能够从健康受试者中快速有效地生成各种类似慢性阻塞性肺疾病的数据,以加强深度学习框架的训练。为了确保我们的领域感知慢性阻塞性肺疾病替代数据的真实性,我们从占空比、样本熵、FEV/FVC比值和流量-容积环等方面,通过流量波形和光电容积脉搏波描记法(PPG)波形(作为胸内压的替代指标)来检查生成的波形。所提出的模拟器作用于健康受试者,能够生成FEV/FVC阻塞比值范围从大于0.8到小于0.2,反映了在现实世界中慢性阻塞性肺疾病全谱中可以观察到的值。作为验证的最后阶段,仅在替代数据上训练一个简单的卷积神经网络,并用于准确检测现实世界中的患者是否患有慢性阻塞性肺疾病。仅在替代数据上训练并在现实世界数据上进行测试时,真阳性率与假阳性率的比较得出曲线下面积为0.75,而仅在现实世界数据上训练时该面积为0.63。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ad/10939325/44d852d32767/davie1-3360688.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验