Suppr超能文献

大规模癌症基因组研究中的单例突变:揭示癌症基因组的尾部

Singleton mutations in large-scale cancer genome studies: uncovering the tail of cancer genome.

作者信息

Desai Sanket, Ahmad Suhail, Bawaskar Bhargavi, Rashmi Sonal, Mishra Rohit, Lakhwani Deepika, Dutt Amit

机构信息

Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India.

Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India.

出版信息

NAR Cancer. 2024 Mar 12;6(1):zcae010. doi: 10.1093/narcan/zcae010. eCollection 2024 Mar.

Abstract

Singleton or low-frequency driver mutations are challenging to identify. We present a domain driver mutation estimator (DOME) to identify rare candidate driver mutations. DOME analyzes positions analogous to known statistical hotspots and resistant mutations in combination with their functional and biochemical residue context as determined by protein structures and somatic mutation propensity within conserved PFAM domains, integrating the CADD scoring scheme. Benchmarked against seven other tools, DOME exhibited superior or comparable accuracy compared to all evaluated tools in the prediction of functional cancer drivers, with the exception of one tool. DOME identified a unique set of 32 917 high-confidence predicted driver mutations from the analysis of whole proteome missense variants within domain boundaries across 1331 genes, including 1192 noncancer gene census genes, emphasizing its unique place in cancer genome analysis. Additionally, analysis of 8799 TCGA (The Cancer Genome Atlas) and in-house tumor samples revealed 847 potential driver mutations, with mutations in tyrosine kinase members forming the dominant burden, underscoring its higher significance in cancer. Overall, DOME complements current approaches for identifying novel, low-frequency drivers and resistant mutations in personalized therapy.

摘要

单例或低频驱动基因突变难以识别。我们提出了一种结构域驱动基因突变估计器(DOME)来识别罕见的候选驱动基因突变。DOME结合蛋白质结构和保守PFAM结构域内的体细胞突变倾向所确定的功能和生化残基背景,分析与已知统计热点和抗性突变类似的位置,并整合了CADD评分方案。与其他七种工具进行基准测试时,除了一种工具外,DOME在预测功能性癌症驱动基因方面的准确性优于或与所有评估工具相当。通过对1331个基因的结构域边界内的全蛋白质组错义变体进行分析,DOME识别出一组独特的32917个高置信度预测驱动基因突变,其中包括1192个非癌症基因普查基因,凸显了其在癌症基因组分析中的独特地位。此外,对8799个TCGA(癌症基因组图谱)和内部肿瘤样本的分析揭示了847个潜在驱动基因突变,酪氨酸激酶成员中的突变占主导,强调了其在癌症中的更高重要性。总体而言,DOME补充了当前在个性化治疗中识别新型低频驱动基因和抗性突变的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f29c/10939354/80bc0043f5ae/zcae010figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验