Suppr超能文献

单细胞离子流表型分析解释了干细胞来源的心肌细胞动作电位形态。

Single-cell ionic current phenotyping explains stem cell-derived cardiomyocyte action potential morphology.

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States.

Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States.

出版信息

Am J Physiol Heart Circ Physiol. 2024 May 1;326(5):H1146-H1154. doi: 10.1152/ajpheart.00063.2024. Epub 2024 Mar 15.

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising tool to study arrhythmia-related factors, but the variability of action potential (AP) recordings from these cells limits their use as an in vitro model. In this study, we use recently published brief (10 s), dynamic voltage-clamp (VC) data to provide mechanistic insights into the ionic currents contributing to AP heterogeneity; we call this approach rapid ionic current phenotyping (RICP). Features of this VC data were correlated to AP recordings from the same cells, and we used computational models to generate mechanistic insights into cellular heterogeneity. This analysis uncovered several interesting links between AP morphology and ionic current density: both L-type calcium and sodium currents contribute to upstroke velocity, rapid delayed rectifier K current is the main determinant of the maximal diastolic potential, and an outward current in the activation range of slow delayed rectifier K is the main determinant of AP duration. Our analysis also identified an outward current in several cells at 6 mV that is not reproduced by iPSC-CM mathematical models but contributes to determining AP duration. RICP can be used to explain how cell-to-cell variability in ionic currents gives rise to AP heterogeneity. Because of its brief duration (10 s) and ease of data interpretation, we recommend the use of RICP for single-cell patch-clamp experiments that include the acquisition of APs. We present rapid ionic current phenotyping (RICP), a current quantification approach based on an optimized voltage-clamp protocol. The method captures a rich snapshot of the ionic current dynamics, providing quantitative information about multiple currents (e.g., , ) in the same cell. The protocol helped to identify key ionic determinants of cellular action potential heterogeneity in iPSC-CMs. This included unexpected results, such as the critical role of in establishing the maximum diastolic potential.

摘要

人诱导多能干细胞衍生的心肌细胞(iPSC-CMs)是研究心律失常相关因素的有前途的工具,但这些细胞的动作电位(AP)记录的可变性限制了它们作为体外模型的使用。在这项研究中,我们使用最近发表的简短(10 秒)、动态电压钳(VC)数据,提供有助于 AP 异质性的离子电流的机制见解;我们称这种方法为快速离子电流表型(RICP)。该 VC 数据的特征与来自同一细胞的 AP 记录相关联,我们使用计算模型生成对细胞异质性的机制见解。该分析揭示了 AP 形态和离子电流密度之间的几个有趣联系:L 型钙和钠电流都有助于上升速度,快速延迟整流钾电流是最大舒张电位的主要决定因素,激活范围内的外向电流是决定 AP 持续时间的主要因素。我们的分析还在几个细胞中鉴定出在 6 mV 时的外向电流,该电流不能被 iPSC-CM 数学模型复制,但有助于确定 AP 持续时间。RICP 可用于解释离子电流的细胞间可变性如何导致 AP 异质性。由于其持续时间短(10 秒)且易于解释数据,我们建议在包括获取 AP 的单细胞膜片钳实验中使用 RICP。我们提出了快速离子电流表型(RICP),这是一种基于优化电压钳协议的电流定量方法。该方法捕获了离子电流动力学的丰富快照,提供了有关同一细胞中多个电流(例如, )的定量信息。该方案有助于确定 iPSC-CMs 中细胞动作电位异质性的关键离子决定因素。这包括意想不到的结果,例如 在建立最大舒张电位方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a919/11380975/58e814945148/ajpheart.00063.2024_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验