Wang Yong, Zhao Wenru, Chen Xiaofeng, Ji Yinjie, Zhu Xilei, Chen Xiaomai, Mei Donghai, Shi Hui, Lercher Johannes A
Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
J Am Chem Soc. 2024 Mar 27;146(12):8630-8640. doi: 10.1021/jacs.4c00738. Epub 2024 Mar 15.
HS reforming of methane (HRM) provides a potential strategy to directly utilize sour natural gas for the production of CO-free H and sulfur chemicals. Several carbon allotropes were found to be active and selective for HRM, while the additional presence of transition metals led to further rate enhancements and outstanding stability (e.g., Ru supported on carbon black). Most metals are transformed to sulfides, but the carbon supports prevent sintering under the harsh reaction conditions. Supported by theoretical calculations, kinetic and isotopic investigations with representative catalysts showed that HS decomposition and the recombination of surface H atoms are quasi-equilibrated, while the first C-H bond scission is the kinetically relevant step. Theory and experiments jointly establish that dynamically formed surface sulfur dimers are responsible for methane activation and catalytic turnovers on sulfide and carbon surfaces that are otherwise inert without reaction-derived active sites.
甲烷的氢硫化重整(HRM)提供了一种直接利用酸性天然气生产无CO氢气和硫磺化学品的潜在策略。人们发现几种碳的同素异形体对HRM具有活性和选择性,而过渡金属的额外存在导致反应速率进一步提高和出色的稳定性(例如,负载在炭黑上的Ru)。大多数金属会转化为硫化物,但碳载体可防止在苛刻的反应条件下发生烧结。在理论计算的支持下,对代表性催化剂进行的动力学和同位素研究表明,H₂S分解和表面H原子的重组接近平衡,而第一个C-H键的断裂是动力学相关步骤。理论和实验共同证明,动态形成的表面硫二聚体负责在硫化物和碳表面上的甲烷活化和催化周转,否则这些表面在没有反应衍生的活性位点的情况下是惰性的。