Kurlov Alexey, Deeva Evgeniya B, Abdala Paula M, Lebedev Dmitry, Tsoukalou Athanasia, Comas-Vives Aleix, Fedorov Alexey, Müller Christoph R
Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH 8092, Zürich, Switzerland.
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH 8093, Zürich, Switzerland.
Nat Commun. 2020 Oct 2;11(1):4920. doi: 10.1038/s41467-020-18721-0.
The two-dimensional morphology of molybdenum oxycarbide (2D-MoCO) nanosheets dispersed on silica is found vital for imparting high stability and catalytic activity in the dry reforming of methane. Here we report that owing to the maximized metal utilization, the specific activity of 2D-MoCO/SiO exceeds that of other MoC catalysts by ca. 3 orders of magnitude. 2D-MoCO is activated by CO, yielding a surface oxygen coverage that is optimal for its catalytic performance and a Mo oxidation state of ca. +4. According to ab initio calculations, the DRM proceeds on Mo sites of the oxycarbide nanosheet with an oxygen coverage of 0.67 monolayer. Methane activation is the rate-limiting step, while the activation of CO and the C-O coupling to form CO are low energy steps. The deactivation of 2D-MoCO/SiO under DRM conditions can be avoided by tuning the contact time, thereby preventing unfavourable oxygen surface coverages.
发现分散在二氧化硅上的碳氧化钼(2D-MoCO)纳米片的二维形态对于在甲烷干重整中赋予高稳定性和催化活性至关重要。在此我们报告,由于金属利用率最大化,2D-MoCO/SiO的比活性比其他MoC催化剂高出约3个数量级。2D-MoCO被CO活化,产生对其催化性能而言最佳的表面氧覆盖率和约+4的Mo氧化态。根据从头算计算,DRM在氧碳化物纳米片的Mo位点上进行,氧覆盖率为0.67单层。甲烷活化是限速步骤,而CO的活化以及C-O偶联形成CO是低能步骤。通过调整接触时间可以避免2D-MoCO/SiO在DRM条件下失活,从而防止不利的氧表面覆盖率。