School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
Plant Cell Environ. 2024 Sep;47(9):3393-3410. doi: 10.1111/pce.14880. Epub 2024 Mar 15.
Understanding the short-term responses of mesophyll conductance (g) and stomatal conductance (g) to environmental changes remains a challenging yet central aspect of plant physiology. This review synthesises our current knowledge of these short-term responses, which underpin CO diffusion within leaves. Recent methodological advances in measuring g using online isotopic discrimination and chlorophyll fluorescence have improved our confidence in detecting short-term g responses, but results need to be carefully evaluated. Environmental factors like vapour pressure deficit and CO concentration indirectly impact g through g changes, highlighting some of the complex interactions between the two parameters. Evidence suggests that short-term responses of g are not, or at least not fully, mechanistically linked to changes in g, cautioning against using g as a reliable proxy for g. The overarching challenge lies in unravelling the mechanistic basis of short-term g responses, which will contribute to the development of accurate models bridging laboratory insights with broader ecological implications. Addressing these gaps in understanding is crucial for refining predictions of g behaviour under changing environmental conditions.
理解叶片中叶肉导度(g)和气孔导度(g)对环境变化的短期响应仍然是植物生理学中的一个具有挑战性但核心的方面。本综述综合了我们目前对这些短期响应的认识,这些响应是 CO 在叶片内扩散的基础。使用在线同位素分馏和叶绿素荧光测量 g 的最新方法进展提高了我们检测短期 g 响应的信心,但结果需要仔细评估。环境因素,如蒸气压亏缺和 CO 浓度,通过 g 的变化间接影响 g,突出了这两个参数之间的一些复杂相互作用。有证据表明,g 的短期响应不是(或者至少不完全是)与 g 的变化在机制上相关联的,这告诫人们不要将 g 用作 g 的可靠替代物。面临的主要挑战在于揭示短期 g 响应的机制基础,这将有助于发展准确的模型,将实验室的见解与更广泛的生态影响联系起来。解决这些理解上的差距对于在不断变化的环境条件下细化 g 行为的预测至关重要。