Smit Samuel J, Ayten Sefa, Radzikowska Barbara A, Hamilton John P, Langer Swen, Unsworth William P, Larson Tony R, Buell C Robin, Lichman Benjamin R
Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA.
Plant J. 2024 Jun;118(5):1589-1602. doi: 10.1111/tpj.16698. Epub 2024 Mar 15.
Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.
环烯醚萜是昆虫和植物产生的非典型单萜类化合物。一个例子是由荆芥属植物(猫薄荷)和蚜虫产生的吸引猫并驱避昆虫的挥发性环烯醚萜荆芥内酯。最近,荆芥内酯的两条生物合成途径都已阐明,显示出显著的趋同进化。由药用石蚕(猫百里香)和多种昆虫物种产生的环烯醚萜——长叶烯醛,与荆芥内酯具有高度相似的特性,但其生物合成起源仍然未知。我们着手确定药用石蚕中环烯醚萜生物合成的基因组、酶学和进化基础。首先,我们使用牛津纳米孔技术长读长和连接邻近Hi-C读长,为药用石蚕生成了一个从头染色体规模的基因组组装。这个610.3 Mb的组装跨越15个假分子,N50支架大小为32.9 Mb。这使得能够鉴定环烯醚萜生物合成基因,其作用通过活性测定得到验证。系统基因组分析表明,药用石蚕环烯醚萜合酶(环烯醚萜支架形成酶)的进化历史与典型的环烯醚萜合酶并非直系同源,而是源自其保守的旁系同源物。我们发现了一条从荆芥醇到多种环烯醚萜的酶促途径,该途径通过环烯醚萜氧化酶细胞色素P450和乙酰转移酶的偶联活性,经由一个推测的酰化中间体。这项工作为薄荷中特殊代谢物的研究提供了基因组资源,并证明了乙酰化在药用石蚕环烯醚萜多样性中的作用。这项工作将有助于未来生物催化或生物合成生产强效驱虫剂,以及对昆虫中环烯醚萜生物合成的比较研究。