Suppr超能文献

漆酶驱动根际腐殖化缓解小麦 17β-雌二醇污染的作用机制的新见解。

Novel insights into the mechanism of laccase-driven rhizosphere humification for alleviating wheat 17β-estradiol contamination.

机构信息

Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Environ Int. 2024 Mar;185:108576. doi: 10.1016/j.envint.2024.108576. Epub 2024 Mar 13.

Abstract

Global-scale crop contamination with environmental estrogens has posed a huge risk to agri-food safety and human health. Laccase is regarded as an unexceptionable biocatalyst for regulating pollution and expediting humification, but the knowledge of estrogen bioremediation and C storage strengthened by laccase-driven rhizosphere humification (LDRH) remains largely unknown. Herein, a greenhouse microcosm was performed to explore the migration and fate of 17β-estradiol (E2) in water-wheat (Triticum aestivum L.) matrices by LDRH. Compared to the non-added laccase, the pseudo-first-order decay rate constants of E2 in the rhizosphere solution after 10 and 50 μM exposures by LDRH increased from 0.03 and 0.02 h to 0.36 and 0.09 h, respectively. Furthermore, LDRH conferred higher yield, polymerizability, O-containing groups, and functional-C signals in the humified precipitates, because it accelerated the formation of highly complex precipitates by radical-controlled continuous polymerization. In particular, not only did LDRH mitigate the phytotoxicity of E2, but it also diminished the metabolic load of E2 in wheat tissues. This was attributed to the rapid attenuation of E2 in the rhizosphere solution during LDRH, which limited E2 uptake and accumulation in each subcellular fraction of the wheat roots and shoots. Although several typical intermediate products such as estrone, estriol, and E2 oligomers were detected in roots, only small-molecule species were found in shoots, evidencing that the polymeric products of E2 were unable to be translocated acropetally due to the vast hydrophobicity and biounavailability. For the first time, our study highlights a novel, eco-friendly, and sustainable candidate for increasing the low-C treatment of organics in rhizosphere microenvironments and alleviating the potential risks of estrogenic contaminants in agroenvironments.

摘要

全球范围内,环境雌激素对农作物的污染对农业食品安全和人类健康构成了巨大威胁。漆酶被认为是一种调节污染和促进腐殖化的理想生物催化剂,但关于漆酶驱动根际腐殖化(LDRH)增强的雌激素生物修复和碳储存的知识仍知之甚少。在此,通过温室微宇宙实验,研究了 LDRH 对水-小麦(Triticum aestivum L.)基质中 17β-雌二醇(E2)的迁移和归宿。与未添加漆酶相比,LDRH 处理后,10 和 50 μM E2 在根际溶液中的拟一级衰减速率常数分别从 0.03 和 0.02 h 增加到 0.36 和 0.09 h。此外,LDRH 赋予腐殖质沉淀更高的产率、聚合度、含 O 基团和功能 C 信号,因为它通过自由基控制的连续聚合加速了高度复杂沉淀的形成。特别是,LDRH 不仅减轻了 E2 的植物毒性,还降低了 E2 在小麦组织中的代谢负荷。这归因于 LDRH 期间根际溶液中 E2 的快速衰减,从而限制了 E2 在小麦根和地上部各亚细胞部分的吸收和积累。尽管在根部检测到几种典型的中间产物,如雌酮、雌三醇和 E2 低聚物,但在地上部仅发现小分子物质,这表明由于 E2 的巨大疏水性和生物利用度低,E2 的聚合产物无法向地上部转移。本研究首次提出了一种新型的、生态友好的和可持续的候选方法,用于增加根际微环境中低 C 有机物的处理,并减轻农业环境中雌激素污染物的潜在风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验