Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei City 10617, Taiwan, ROC.
Silviculture Division, Taiwan Forestry Research Institute, Taipei City 10066, Taiwan, ROC.
Sci Total Environ. 2024 May 20;926:171587. doi: 10.1016/j.scitotenv.2024.171587. Epub 2024 Mar 13.
Polyacrylamide (PAM) possesses unique characteristics, including high water solubility, elevated viscosity and effective flocculation capabilities. These properties make it valuable in various sectors like agriculture, wastewater treatment, enhanced oil recovery, and mineral processing industries, contributing to a continually expanding market. Despite its widespread use globally, understanding its environmental fate at the soil-water interface remains limited. This article aims to provide an overview of the occurrence, degradation pathways, toxicity, and risks associated with PAM in the bioenvironment. The findings indicate that various degradation pathways of PAM may occur in the bioenvironment through mechanical, thermal, chemical, photocatalytic degradation, and/or biodegradation. Through a series of degradation processes, PAM initially transforms into oligomers and acrylamide (AM). Subsequently, AM may undergo biodegradation, converting into acrylic acid (AA) and other compounds such as ammonia. Notably, among these degradation intermediates, AM demonstrates high biodegradability, and the bioaccumulations of both AM and AA are not considered significant. Ensuring the sustainable use of PAM necessitates a comprehensive understanding among policymakers, scholars, and industry professionals regarding PAM, encompassing its properties, applications, degradation pathways, toxic effect on humans and the environment, and relevant regulations. Additionally, this study offers insights into future priority research directions, such as establishing of a reliable source-to-destination supply chain system, determining the maximum allowable amount for PAM in farmlands, and conducting long-term trials for the PAM-containing demolition residues.
聚丙烯酰胺(PAM)具有独特的特性,包括高水溶性、高粘度和有效的絮凝能力。这些特性使其在农业、废水处理、提高石油采收率和矿物加工等领域具有很高的应用价值,推动了市场的不断扩大。尽管 PAM 在全球范围内得到了广泛应用,但对其在土壤-水界面处的环境归宿的理解仍然有限。本文旨在概述 PAM 在生物环境中的存在、降解途径、毒性和风险。研究结果表明,PAM 在生物环境中可能通过机械、热、化学、光催化降解和/或生物降解等多种途径发生降解。通过一系列降解过程,PAM 最初转化为低聚物和丙烯酰胺(AM)。随后,AM 可能发生生物降解,转化为丙烯酸(AA)和其他化合物,如氨。值得注意的是,在这些降解中间体中,AM 表现出很高的生物降解性,且 AM 和 AA 的生物累积都不被认为是显著的。为了确保 PAM 的可持续利用,政策制定者、学者和行业专业人士需要全面了解 PAM,包括其性质、应用、降解途径、对人类和环境的毒性以及相关法规。此外,本研究还为未来的优先研究方向提供了思路,例如建立可靠的从源头到目的地的供应链系统、确定农田中 PAM 的最大允许量以及进行含有 PAM 的拆迁残留物的长期试验。