Suppr超能文献

三维电化学反应器中 GAC 对 N-亚硝基吡咯烷的去除:降解机制和降解途径。

Removal of N-nitrosopyrrolidine from GAC by a three-dimensional electrochemical reactor: degradation mechanism and degradation path.

机构信息

School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China.

出版信息

Environ Sci Pollut Res Int. 2024 Apr;31(17):25952-25963. doi: 10.1007/s11356-024-32925-7. Epub 2024 Mar 16.

Abstract

Nitrogen-containing disinfection by-products (N-DBPs) produced in the process of drinking water disinfection are widely concerning due to the high cytotoxicity and genotoxicity. It is due to the difficulty of natural degradation of N-DBPs in water and the fact that conventional treatment systems do not effectively treat N-DBPs in drinking water. In this study, N-nitrosopyrrolidine (NPYR) in water was electrocatalytically degraded by a three-dimensional electrode reactor (3DER). This system applied graphite plates as anode and cathode. The granular activated carbon (GAC) was used as third electrode. The degradation of NPYR using a continuous flow three-dimensional electrode reactor was investigated by examining the effects of flow rate, current density, electrolyte concentration, and pollutant concentration on the degradation efficiency, energy consumption, and reaction kinetics of GAC particle electrodes. The results showed that the optimal operating conditions were flow rate = 0.45 mL/min, current density = 6 mA/cm, NaSO concentration = 0.28 mol/L, and NPYR concentration = 20 mg/L. Under optimal conditions, the degradation of NPYR exceeded 58.84%. The main contributor of indirect oxidation was deduced from free radical quenching experiments. NPYR concentration was measured by GC-MS with DB-5 capillary column, operating in full scan monitoring mode for appropriate quantification of NPYR and intermediates. Based on the identification of reaction intermediates, a possible pathway for the electrochemical oxidation of NPYR on GAC particle electrodes was proposed.

摘要

含氮消毒副产物(N-DBPs)在饮用水消毒过程中产生,由于其高细胞毒性和遗传毒性而受到广泛关注。这是由于 N-DBPs 在水中的自然降解困难,以及常规处理系统不能有效处理饮用水中的 N-DBPs 所致。在这项研究中,采用三维电极反应器(3DER)对水中的 N-亚硝基吡咯烷(NPYR)进行电催化降解。该系统采用石墨板作为阳极和阴极,颗粒状活性炭(GAC)作为第三电极。通过考察流速、电流密度、电解质浓度和污染物浓度对 GAC 颗粒电极的降解效率、能耗和反应动力学的影响,研究了连续流动三维电极反应器中 NPYR 的降解情况。结果表明,最佳操作条件为流速=0.45 mL/min、电流密度=6 mA/cm、NaSO 浓度=0.28 mol/L、NPYR 浓度=20 mg/L。在最佳条件下,NPYR 的降解率超过 58.84%。通过自由基猝灭实验推断出间接氧化的主要贡献者。采用 GC-MS 结合 DB-5 毛细管柱,在全扫描监测模式下测定 NPYR 浓度和中间产物,对 NPYR 进行适当的定量分析。根据反应中间体的鉴定,提出了 GAC 颗粒电极上电化学氧化 NPYR 的可能途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验