School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China; Ningxia Waler-saving Irrigation and Water Resource Control Engineering Technology Research Center, Yinchuan, Ningxia 750021, China.
School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
Sci Total Environ. 2024 May 15;925:171731. doi: 10.1016/j.scitotenv.2024.171731. Epub 2024 Mar 15.
Intercropping legume with grass has potential to increase biomass and protein yield via biological N-fixation (BNF) benefits, whereas the joint effects of biochar (BC) coupled with deficit irrigation on intercropping systems remain elusive. A N isotope-labelled experiment was implemented to investigate morpho-physiological responses of faba bean-ryegrass intercrops on low- (550 °C, LTBC) or high-temperature BC (800 °C, HTBC) amended sandy-loam soil under full (FI), deficit (DI) and partial root-zone drying irrigation (PRD). LTBC and HTBC significantly reduced intrinsic water-use efficiency (WUE) by 12 and 14 %, and instantaneous WUE by 8 and 16 %, respectively, in faba bean leaves, despite improved photosynthetic (A) and transpiration rate (T), and stomatal conductance (g). Compared to FI, DI and PRD lowered faba bean A, g and T, but enhanced leaf-scale and time-integrated WUE as proxied by the diminished shoots ΔC. PRD enhanced WUE as lower g, T and guard cell length than DI-plants. Despite higher carbon ([C]) and N concentration ([N]) in faba bean shoots amended by BC, the aboveground C- and N-pool of faba bean were reduced, while these pools increased for ryegrass. The N-use efficiency (NUE) in faba bean shoots was reduced by 9 and 14 % for LTBC and HTBC, respectively, but not for ryegrass. Interestingly, ryegrass shoots had 52 % higher NUE than faba bean shoots. The N derived from atmosphere (% Ndfa) was increased by 2 and 9 % under LTBC and HTBC, respectively, while it decreased slightly by reduced irrigation. Quantity of BNF in faba bean aboveground biomass decreased with HTBC coupled with reduced irrigation, mainly towards decreased biomass and soil N uptake by faba bean. Therefore, HTBC might not be a feasible option to improve WUE and BNF in faba bean-ryegrass intercropping, but PRD is permissible as the clear trade-off between BC and PRD.
间作豆科作物与草具有通过生物固氮(BNF)增加生物量和蛋白质产量的潜力,而生物炭(BC)与亏缺灌溉对间作系统的联合效应仍不清楚。进行了一项氮同位素标记实验,以研究在全水(FI)、亏缺水(DI)和部分根区干燥灌溉(PRD)下,低(550°C,LTBC)或高温 BC(800°C,HTBC)处理的砂壤土中,蚕豆-黑麦草间作对低氮(550°C,LTBC)或高温 BC(800°C,HTBC)的形态生理响应。LTBC 和 HTBC 分别使蚕豆叶片的内在水分利用效率(WUE)降低了 12%和 14%,瞬时 WUE 降低了 8%和 16%,尽管光合(A)和蒸腾速率(T)以及气孔导度(g)有所提高。与 FI 相比,DI 和 PRD 降低了蚕豆的 A、g 和 T,但通过减少茎部的 ΔC 增强了叶尺度和时间积分 WUE。PRD 通过降低 g、T 和保卫细胞长度来提高 WUE,而不是 DI-植物。尽管 BC 处理增加了蚕豆地上部的碳 ([C]) 和氮浓度 ([N]),但蚕豆地上部的 C 和 N 库减少了,而黑麦草的这些库增加了。蚕豆地上部的氮利用效率(NUE)分别因 LTBC 和 HTBC 降低了 9%和 14%,但黑麦草的 NUE 没有降低。有趣的是,黑麦草地上部的 NUE 比蚕豆地上部高 52%。在 LTBC 和 HTBC 下,来自大气的氮量(%Ndfa)分别增加了 2%和 9%,而在减少灌溉下略有减少。蚕豆地上部生物量的生物固氮量随 HTBC 与减少灌溉相结合而减少,主要是由于蚕豆地上部生物量和土壤氮吸收减少。因此,HTBC 可能不是提高蚕豆-黑麦草间作 WUE 和 BNF 的可行选择,但 PRD 是可以接受的,因为 BC 和 PRD 之间存在明显的权衡。