Suppr超能文献

DiffGAN:一种具有局部Transformer 的对抗扩散模型,用于 MRI 重建。

DiffGAN: An adversarial diffusion model with local transformer for MRI reconstruction.

机构信息

School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China; Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China; Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China.

出版信息

Magn Reson Imaging. 2024 Jun;109:108-119. doi: 10.1016/j.mri.2024.03.017. Epub 2024 Mar 15.

Abstract

Magnetic resonance imaging (MRI) is non-invasive and crucial for clinical diagnosis, but it has long acquisition time and aliasing artifacts. Accelerated imaging techniques can effectively reduce the scanning time of MRI, thereby decreasing the anxiety and discomfort of patients. Vision Transformer (ViT) based methods have greatly improved MRI image reconstruction, but their computational complexity and memory requirements for the self-attention mechanism grow quadratically with image resolution, which limits their use for high resolution images. In addition, the current generative adversarial networks in MRI reconstruction are difficult to train stably. To address these problems, we propose a Local Vision Transformer (LVT) based adversarial Diffusion model (Diff-GAN) for accelerating MRI reconstruction. We employ a generative adversarial network (GAN) as the reverse diffusion model to enable large diffusion steps. In the forward diffusion module, we use a diffusion process to generate Gaussian mixture distribution noise, which mitigates the gradient vanishing issue in GAN training. This network leverages the LVT module with the local self-attention, which can capture high-quality local features and detailed information. We evaluate our method on four datasets: IXI, MICCAI 2013, MRNet and FastMRI, and demonstrate that Diff-GAN can outperform several state-of-the-art GAN-based methods for MRI reconstruction.

摘要

磁共振成像(MRI)是非侵入性的,对临床诊断至关重要,但它的采集时间长,存在混叠伪影。加速成像技术可以有效地减少 MRI 的扫描时间,从而降低患者的焦虑和不适。基于 Vision Transformer(ViT)的方法极大地提高了 MRI 图像重建的性能,但它们的自注意力机制的计算复杂度和内存需求随图像分辨率呈二次增长,限制了它们在高分辨率图像上的应用。此外,目前 MRI 重建中的生成对抗网络很难稳定地训练。针对这些问题,我们提出了一种基于局部 Vision Transformer(LVT)的对抗性扩散模型(Diff-GAN)来加速 MRI 重建。我们采用生成对抗网络(GAN)作为反向扩散模型,以实现大的扩散步长。在正向扩散模块中,我们使用扩散过程生成高斯混合分布噪声,缓解了 GAN 训练中的梯度消失问题。该网络利用具有局部自注意力的 LVT 模块,可以捕获高质量的局部特征和详细信息。我们在四个数据集上评估了我们的方法:IXI、MICCAI 2013、MRNet 和 FastMRI,并证明 Diff-GAN 可以在 MRI 重建方面优于几种基于 GAN 的最新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验