Lyu Jun, Li Guangyuan, Wang Chengyan, Qin Chen, Wang Shuo, Dou Qi, Qin Jing
School of Computer and Control Engineering, Yantai University, Yantai, China.
Human Phenome Institute, Fudan University, Shanghai, China.
Med Image Anal. 2023 Apr;85:102760. doi: 10.1016/j.media.2023.102760. Epub 2023 Jan 27.
Cardiac cine magnetic resonance imaging (MRI) reconstruction is challenging due to spatial and temporal resolution trade-offs. Temporal correlation in cardiac cine MRI is informative and vital for understanding cardiac dynamic motion. Exploiting the temporal correlations in cine reconstruction is crucial to resolve aliasing artifacts and maintaining the cardiac motion patterns. However, existing methods have the following shortcomings: (1) they simultaneously compute pairwise correlations along spatial and temporal dimensions to establish dependencies, ignoring that learning spatial contextual information first will benefit the temporal modeling. (2) most studies neglect to focus on reconstructing the local cardiac regions, resulting in insufficient reconstruction accuracy due to a relatively large field of view. To address these problems, we propose a region-focused multi-view transformer-based generative adversarial network for cardiac cine MRI reconstruction. The proposed transformer divides consecutive cardiac frames into multiple views for cross-view feature extraction, establishing long-distance dependencies among features and effectively learning the spatio-temporal information. We further design a cross-view attention for spatio-temporal information fusion, ensuring the interaction of different spatio-temporal information in each view and capturing more temporal correlations of the cardiac motion. In addition, we introduce a cardiac region detection loss for improving the reconstruction quality of the cardiac region. Experimental results demonstrated that our method outperforms state-of-the-art methods. Especially with an acceleration factor as high as 10×, our method can reconstruct images with better accuracy and perceptual quality.
心脏电影磁共振成像(MRI)重建具有挑战性,因为存在空间和时间分辨率的权衡。心脏电影MRI中的时间相关性对理解心脏动态运动具有重要意义且至关重要。在电影重建中利用时间相关性对于解决混叠伪影和保持心脏运动模式至关重要。然而,现有方法存在以下缺点:(1)它们同时沿着空间和时间维度计算成对相关性以建立依赖关系,而忽略了首先学习空间上下文信息将有利于时间建模。(2)大多数研究忽略了专注于重建局部心脏区域,由于视野相对较大,导致重建精度不足。为了解决这些问题,我们提出了一种基于区域聚焦的多视图变压器的生成对抗网络用于心脏电影MRI重建。所提出的变压器将连续的心脏帧划分为多个视图进行跨视图特征提取,在特征之间建立长距离依赖关系并有效地学习时空信息。我们进一步设计了一种用于时空信息融合的跨视图注意力,确保每个视图中不同时空信息的交互并捕获心脏运动的更多时间相关性。此外,我们引入了一种心脏区域检测损失以提高心脏区域的重建质量。实验结果表明,我们的方法优于现有方法。特别是在加速因子高达10倍的情况下,我们的方法能够以更高的精度和感知质量重建图像。