Suppr超能文献

使用 101 种机器学习组合进行的批量和单细胞 RNA 测序分析表明,中性粒细胞胞外陷阱参与肝缺血再灌注损伤和早期移植物功能障碍。

Bulk and single-cell RNA sequencing analysis with 101 machine learning combinations reveal neutrophil extracellular trap involvement in hepatic ischemia-reperfusion injury and early allograft dysfunction.

机构信息

Departments of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.

Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Clinical Research Center for Organ Transplantation, Nanning, China; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China.

出版信息

Int Immunopharmacol. 2024 Apr 20;131:111874. doi: 10.1016/j.intimp.2024.111874. Epub 2024 Mar 16.

Abstract

BACKGROUND

Hepatic ischaemia-reperfusion injury (HIRI) is a major clinical concern during the perioperative period and is closely associated with early allograft dysfunction (EAD), acute rejection (AR) and long-term graft survival. Neutrophil extracellular traps (NETs) are extracellular structures formed by the release of decondensed chromatin and granular proteins following neutrophil stimulation. There is growing evidence that NETs are involved in the progression of various liver transplantation complications, including ischaemia-reperfusion injury (IRI). This study aimed to comprehensively analyse the expression patterns of NET-related genes (NRGs) in HIRI, identify HIRI subtypes with distinct characteristics, and develop a reliable EAD prediction model.

METHODS

Microarray, bulk RNA-seq, and single-cell sequencing datasets were obtained from the GEO database. Initially, differentially expressed NRGs (DE-NRGs) were identified using differential gene expression analyses. We then utilised a non-negative matrix factorisation (NMF) algorithm to classify HIRI samples. Subsequently, we employed machine learning algorithms to screen the hub NRGs related to EAD and developed an EAD prediction model based on these hub NRGs. Concurrently, we assessed the expression patterns of hub NRGs at the single-cell level using the HIRI. Additionally, we validated C5AR1 expression and its effect on HIRI and NETs formation in a rat orthotopic liver transplantation (OLT) model.

RESULTS

In this study, we identified 11 DE-NRGs in the HIRI context. Based on these 11 DE-NRGs, HIRI samples were classified into two distinct clusters. Cluster1 exhibited a low expression of DE-NRGs, minimal neutrophil infiltration, mild inflammation, and a low incidence of EAD. Conversely, Cluster2 displayed the opposite phenotype, with an activated inflammatory subtype and a higher incidence of EAD. Furthermore, an EAD prediction model was developed using the four hub NRGs associated with EAD. Based on risk scores, HIRI samples were classified into high- and low-risk groups. The OLT model confirmed substantial upregulation of C5AR1 expression in the liver tissue, accompanied by increased formation of NETs. Treatment with a C5AR1 antagonist improved liver function, reduced tissue inflammation, and decreased NETs formation.

CONCLUSIONS

This study distinguished two apparent HIRI subtypes, established a predictive model for EAD, and validated the effect of C5AR1 on HIRI. These findings provide novel perspectives for the development of advanced clinical strategies to enhance the outcomes of liver transplant recipients.

摘要

背景

肝缺血再灌注损伤(HIRI)是围手术期的一个主要临床关注点,与早期移植物功能障碍(EAD)、急性排斥(AR)和长期移植物存活率密切相关。中性粒细胞胞外诱捕网(NETs)是中性粒细胞受刺激后释放去凝聚染色质和颗粒蛋白形成的细胞外结构。越来越多的证据表明,NETs 参与了各种肝移植并发症的进展,包括缺血再灌注损伤(IRI)。本研究旨在全面分析 HIRI 中与 NET 相关的基因(NRGs)的表达模式,鉴定具有不同特征的 HIRI 亚型,并建立可靠的 EAD 预测模型。

方法

从 GEO 数据库中获得微阵列、批量 RNA-seq 和单细胞测序数据集。首先,使用差异基因表达分析鉴定差异表达的 NRGs(DE-NRGs)。然后,我们使用非负矩阵分解(NMF)算法对 HIRI 样本进行分类。随后,我们采用机器学习算法筛选与 EAD 相关的关键 NRGs,并基于这些关键 NRGs 建立 EAD 预测模型。同时,我们在 HIRI 中评估了关键 NRGs 的单细胞水平表达模式。此外,我们还在大鼠原位肝移植(OLT)模型中验证了 C5AR1 的表达及其对 HIRI 和 NETs 形成的影响。

结果

在这项研究中,我们在 HIRI 背景下鉴定出 11 个 DE-NRGs。基于这 11 个 DE-NRGs,将 HIRI 样本分为两个不同的簇。簇 1 表现为 DE-NRGs 低表达、中性粒细胞浸润少、炎症轻微、EAD 发生率低。相反,簇 2 表现为相反的表型,具有激活的炎症亚型和更高的 EAD 发生率。此外,还建立了一个基于与 EAD 相关的四个关键 NRGs 的 EAD 预测模型。基于风险评分,将 HIRI 样本分为高风险组和低风险组。OLT 模型证实,肝组织中 C5AR1 的表达显著上调,并伴有 NETs 的形成增加。用 C5AR1 拮抗剂治疗可改善肝功能、减轻组织炎症和减少 NETs 的形成。

结论

本研究区分了两种明显的 HIRI 亚型,建立了 EAD 的预测模型,并验证了 C5AR1 对 HIRI 的作用。这些发现为开发先进的临床策略提供了新的视角,以提高肝移植受者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验