Suppr超能文献

语言模型及其在生物医学中的可解释性:一项范围综述。

Language model and its interpretability in biomedicine: A scoping review.

作者信息

Lyu Daoming, Wang Xingbo, Chen Yong, Wang Fei

机构信息

Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, New York, NY, USA.

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

出版信息

iScience. 2024 Feb 24;27(4):109334. doi: 10.1016/j.isci.2024.109334. eCollection 2024 Apr 19.

Abstract

With advancements in large language models, artificial intelligence (AI) is undergoing a paradigm shift where AI models can be repurposed with minimal effort across various downstream tasks. This provides great promise in learning generally useful representations from biomedical corpora, at scale, which would empower AI solutions in healthcare and biomedical research. Nonetheless, our understanding of how they work, when they fail, and what they are capable of remains underexplored due to their emergent properties. Consequently, there is a need to comprehensively examine the use of language models in biomedicine. This review aims to summarize existing studies of language models in biomedicine and identify topics ripe for future research, along with the technical and analytical challenges w.r.t. interpretability. We expect this review to help researchers and practitioners better understand the landscape of language models in biomedicine and what methods are available to enhance the interpretability of their models.

摘要

随着大语言模型的发展,人工智能(AI)正在经历一场范式转变,即可以轻松地将AI模型重新用于各种下游任务。这为从生物医学语料库中大规模学习普遍有用的表示形式带来了巨大希望,这将增强医疗保健和生物医学研究中的AI解决方案。尽管如此,由于其涌现特性,我们对它们如何工作、何时失败以及它们能够做什么的理解仍未得到充分探索。因此,有必要全面研究语言模型在生物医学中的应用。本综述旨在总结生物医学中语言模型的现有研究,确定适合未来研究的主题,以及与可解释性相关的技术和分析挑战。我们希望本综述能帮助研究人员和从业者更好地了解生物医学中语言模型的情况,以及有哪些方法可以提高其模型的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3142/10940999/041980122630/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验