SNOMED CT 在大语言模型中的应用:范围综述。
Use of SNOMED CT in Large Language Models: Scoping Review.
机构信息
Republic of Korea Air Force Aerospace Medical Center, Cheongju, Republic of Korea.
Department of Nursing Science, Research Institute of Nursing Science, Chungbuk National University, Cheongju, Republic of Korea.
出版信息
JMIR Med Inform. 2024 Oct 7;12:e62924. doi: 10.2196/62924.
BACKGROUND
Large language models (LLMs) have substantially advanced natural language processing (NLP) capabilities but often struggle with knowledge-driven tasks in specialized domains such as biomedicine. Integrating biomedical knowledge sources such as SNOMED CT into LLMs may enhance their performance on biomedical tasks. However, the methodologies and effectiveness of incorporating SNOMED CT into LLMs have not been systematically reviewed.
OBJECTIVE
This scoping review aims to examine how SNOMED CT is integrated into LLMs, focusing on (1) the types and components of LLMs being integrated with SNOMED CT, (2) which contents of SNOMED CT are being integrated, and (3) whether this integration improves LLM performance on NLP tasks.
METHODS
Following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines, we searched ACM Digital Library, ACL Anthology, IEEE Xplore, PubMed, and Embase for relevant studies published from 2018 to 2023. Studies were included if they incorporated SNOMED CT into LLM pipelines for natural language understanding or generation tasks. Data on LLM types, SNOMED CT integration methods, end tasks, and performance metrics were extracted and synthesized.
RESULTS
The review included 37 studies. Bidirectional Encoder Representations from Transformers and its biomedical variants were the most commonly used LLMs. Three main approaches for integrating SNOMED CT were identified: (1) incorporating SNOMED CT into LLM inputs (28/37, 76%), primarily using concept descriptions to expand training corpora; (2) integrating SNOMED CT into additional fusion modules (5/37, 14%); and (3) using SNOMED CT as an external knowledge retriever during inference (5/37, 14%). The most frequent end task was medical concept normalization (15/37, 41%), followed by entity extraction or typing and classification. While most studies (17/19, 89%) reported performance improvements after SNOMED CT integration, only a small fraction (19/37, 51%) provided direct comparisons. The reported gains varied widely across different metrics and tasks, ranging from 0.87% to 131.66%. However, some studies showed either no improvement or a decline in certain performance metrics.
CONCLUSIONS
This review demonstrates diverse approaches for integrating SNOMED CT into LLMs, with a focus on using concept descriptions to enhance biomedical language understanding and generation. While the results suggest potential benefits of SNOMED CT integration, the lack of standardized evaluation methods and comprehensive performance reporting hinders definitive conclusions about its effectiveness. Future research should prioritize consistent reporting of performance comparisons and explore more sophisticated methods for incorporating SNOMED CT's relational structure into LLMs. In addition, the biomedical NLP community should develop standardized evaluation frameworks to better assess the impact of ontology integration on LLM performance.
背景
大型语言模型(LLMs)在自然语言处理(NLP)方面取得了重大进展,但在生物医学等专业领域的知识驱动任务方面仍存在困难。将 SNOMED CT 等生物医学知识源整合到 LLM 中可能会提高它们在生物医学任务上的性能。然而,将 SNOMED CT 整合到 LLM 中的方法和效果尚未得到系统审查。
目的
本范围综述旨在考察 SNOMED CT 如何整合到 LLM 中,重点关注:(1)与 SNOMED CT 整合的 LLM 的类型和组成部分,(2)整合的 SNOMED CT 的内容,以及(3)这种整合是否提高了 LLM 在 NLP 任务上的性能。
方法
我们遵循 PRISMA-ScR(用于系统评价和荟萃分析扩展的首选报告项目)指南,从 2018 年至 2023 年在 ACM 数字图书馆、ACL 文集、IEEE Xplore、PubMed 和 Embase 中搜索了相关研究。如果研究将 SNOMED CT 整合到自然语言理解或生成任务的 LLM 管道中,则将其纳入研究。提取并综合了有关 LLM 类型、SNOMED CT 整合方法、最终任务和性能指标的数据。
结果
综述纳入了 37 项研究。双向编码器表示来自变压器及其生物医学变体是最常用的 LLM。确定了三种将 SNOMED CT 整合到 LLM 中的主要方法:(1)将 SNOMED CT 整合到 LLM 输入中(28/37,76%),主要使用概念描述来扩展训练语料库;(2)将 SNOMED CT 整合到附加融合模块中(5/37,14%);(3)在推理过程中使用 SNOMED CT 作为外部知识检索(5/37,14%)。最常见的最终任务是医学概念规范化(15/37,41%),其次是实体提取或类型和分类。虽然大多数研究(17/19,89%)报告在整合 SNOMED CT 后性能有所提高,但只有一小部分(19/37,51%)提供了直接比较。报告的收益在不同的指标和任务上差异很大,范围从 0.87%到 131.66%。然而,一些研究表明,在某些性能指标上,要么没有提高,要么有所下降。
结论
本综述展示了将 SNOMED CT 整合到 LLM 中的多种方法,重点是使用概念描述来增强生物医学语言的理解和生成。虽然结果表明 SNOMED CT 整合具有潜在优势,但缺乏标准化的评估方法和全面的性能报告妨碍了对其有效性的明确结论。未来的研究应优先考虑一致报告性能比较,并探索更复杂的方法来将 SNOMED CT 的关系结构整合到 LLM 中。此外,生物医学 NLP 社区应开发标准化的评估框架,以更好地评估本体整合对 LLM 性能的影响。