Suppr超能文献

使用具有随机序列扫描和局部受挫分析的AlphaFold2适配对蛋白激酶中的构象集合和变构状态进行可解释的原子预测和功能分析。

Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling.

作者信息

Raisinghani Nishank, Alshahrani Mohammed, Gupta Grace, Tian Hao, Xiao Sian, Tao Peng, Verkhivker Gennady

出版信息

bioRxiv. 2024 Feb 20:2024.02.15.580591. doi: 10.1101/2024.02.15.580591.

Abstract

The groundbreaking achievements of AlphaFold2 (AF2) approaches in protein structure modeling marked a transformative era in structural biology. Despite the success of AF2 tools in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and fold-switching systems. The recent NMR-based structural determination of the unbound ABL kinase in the active state and two inactive low-populated functional conformations that are unique for ABL kinase presents an ideal challenge for AF2 approaches. In the current study we employ several implementations of AF2 methods to predict protein conformational ensembles and allosteric states of the ABL kinase including (a) multiple sequence alignments (MSA) subsampling approach; (b) SPEACH_AF approach in which alanine scanning is performed on generated MSAs; and (c) introduced in this study randomized full sequence mutational scanning for manipulation of sequence variations combined with the MSA subsampling. We show that the proposed AF2 adaptation combined with local frustration mapping of conformational states enable accurate prediction of the ABL active and intermediate structures and conformational ensembles, also offering a robust approach for interpretable characterization of the AF2 predictions and limitations in detecting hidden allosteric states. We found that the large high frustration residue clusters are uniquely characteristic of the low-populated, fully inactive ABL form and can define energetically frustrated cracking sites of conformational transitions, presenting difficult targets for AF2 methods. This study uncovered previously unappreciated, fundamental connections between distinct patterns of local frustration in functional kinase states and AF2 successes/limitations in detecting low-populated frustrated conformations, providing a better understanding of benefits and limitations of current AF2-based adaptations in modeling of conformational ensembles.

摘要

AlphaFold2(AF2)方法在蛋白质结构建模方面的开创性成就标志着结构生物学进入了一个变革性的时代。尽管AF2工具在预测单个蛋白质结构方面取得了成功,但这些方法在预测变构蛋白和折叠转换系统的多种功能构象时显示出内在局限性。最近基于核磁共振确定了处于活性状态的未结合ABL激酶以及ABL激酶特有的两种低丰度非活性功能构象,这对AF2方法提出了理想的挑战。在本研究中,我们采用了几种AF2方法的实现方式来预测ABL激酶的蛋白质构象集合和变构状态,包括:(a)多序列比对(MSA)二次抽样方法;(b)SPEACH_AF方法,即在生成的MSA上进行丙氨酸扫描;以及(c)本研究中引入的随机全序列突变扫描,用于操纵序列变异并结合MSA二次抽样。我们表明,所提出的AF2改进方法与构象状态的局部受挫映射相结合,能够准确预测ABL的活性和中间结构以及构象集合,还为AF2预测的可解释性表征以及检测隐藏变构状态的局限性提供了一种稳健的方法。我们发现,大的高受挫残基簇是低丰度、完全非活性ABL形式的独特特征,并且可以定义构象转变的能量受挫断裂位点,这对AF2方法来说是困难的目标。这项研究揭示了功能激酶状态下局部受挫的不同模式与AF2在检测低丰度受挫构象方面的成功/局限性之间以前未被认识到的基本联系,从而更好地理解了当前基于AF2的改进方法在构象集合建模中的优点和局限性。

相似文献

5
Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures.
bioRxiv. 2023 Sep 2:2023.08.31.555779. doi: 10.1101/2023.08.31.555779.
7
Rosetta Energy Analysis of AlphaFold2 models: Point Mutations and Conformational Ensembles.
bioRxiv. 2024 Jan 27:2023.09.05.556364. doi: 10.1101/2023.09.05.556364.
9
Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures.
Bioinform Adv. 2023 Sep 15;3(1):vbad129. doi: 10.1093/bioadv/vbad129. eCollection 2023.
10
Predicting protein conformational motions using energetic frustration analysis and AlphaFold2.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2410662121. doi: 10.1073/pnas.2410662121. Epub 2024 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验