Suppr超能文献

探究AlphaFold2预测的蛋白激酶结构的构象景观。

Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures.

作者信息

Al-Masri Carmen, Trozzi Francesco, Lin Shu-Hang, Tran Oanh, Sahni Navriti, Patek Marcel, Cichonska Anna, Ravikumar Balaguru, Rahman Rayees

机构信息

Harmonic Discovery Inc., New York, NY 10013, United States.

Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, United States.

出版信息

Bioinform Adv. 2023 Sep 15;3(1):vbad129. doi: 10.1093/bioadv/vbad129. eCollection 2023.

Abstract

SUMMARY

Protein kinases are a family of signaling proteins, crucial for maintaining cellular homeostasis. When dysregulated, kinases drive the pathogenesis of several diseases, and are thus one of the largest target categories for drug discovery. Kinase activity is tightly controlled by switching through several active and inactive conformations in their catalytic domain. Kinase inhibitors have been designed to engage kinases in specific conformational states, where each conformation presents a unique physico-chemical environment for therapeutic intervention. Thus, modeling kinases across conformations can enable the design of novel and optimally selective kinase drugs. Due to the recent success of AlphaFold2 in accurately predicting the 3D structure of proteins based on sequence, we investigated the conformational landscape of protein kinases as modeled by AlphaFold2. We observed that AlphaFold2 is able to model several kinase conformations across the kinome, however, certain conformations are only observed in specific kinase families. Furthermore, we show that the per residue predicted local distance difference test can capture information describing structural flexibility of kinases. Finally, we evaluated the docking performance of AlphaFold2 kinase structures for enriching known ligands. Taken together, we see an opportunity to leverage AlphaFold2 models for structure-based drug discovery against kinases across several pharmacologically relevant conformational states.

AVAILABILITY AND IMPLEMENTATION

All code used in the analysis is freely available at https://github.com/Harmonic-Discovery/AF2-kinase-conformational-landscape.

摘要

摘要

蛋白激酶是一类信号蛋白家族,对维持细胞内稳态至关重要。当失调时,激酶会引发多种疾病的发病机制,因此是药物研发中最大的靶点类别之一。激酶活性通过其催化结构域中几种活性和非活性构象的转换受到严格控制。激酶抑制剂被设计用于使激酶处于特定的构象状态,其中每种构象都为治疗干预提供了独特的物理化学环境。因此,对激酶的不同构象进行建模能够设计出新型且具有最佳选择性的激酶药物。由于AlphaFold2最近在基于序列准确预测蛋白质三维结构方面取得了成功,我们研究了由AlphaFold2建模的蛋白激酶的构象景观。我们观察到AlphaFold2能够对整个激酶组中的几种激酶构象进行建模,然而,某些构象仅在特定的激酶家族中被观察到。此外,我们表明每个残基预测的局部距离差异测试能够捕捉描述激酶结构灵活性的信息。最后,我们评估了AlphaFold2激酶结构用于富集已知配体的对接性能。综上所述,我们看到了利用AlphaFold2模型针对多种药理学相关构象状态的激酶进行基于结构的药物发现的机会。

可用性和实现方式

分析中使用的所有代码可在https://github.com/Harmonic-Discovery/AF2-kinase-conformational-landscape上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c3/10541651/06e93f06a9b1/vbad129f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验