丘脑刺激诱发癫痫中网络连通性和兴奋性的变化。

Thalamic stimulation induced changes in network connectivity and excitability in epilepsy.

作者信息

Gregg Nicholas M, Valencia Gabriela Ojeda, Pridalova Tereza, Huang Harvey, Kremen Vaclav, Lundstrom Brian N, Van Gompel Jamie J, Miller Kai J, Worrell Gregory A, Hermes Dora

机构信息

Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, 55905, USA.

出版信息

medRxiv. 2025 Feb 26:2024.03.03.24303480. doi: 10.1101/2024.03.03.24303480.

Abstract

BACKGROUND

The clinical effects of deep brain stimulation for neurological conditions manifest across multiple timescales, spanning seconds to months, and involve direct electrical modulation, neuroplasticity, and network reorganization. In epilepsy, the delayed effects of deep brain stimulation on seizures limit optimization. Single pulse electrical stimulation and the resulting pulse evoked potentials offer a measure network effective connectivity and excitability. This study leverages single pulse and high frequency thalamic stimulation during stereotactic electroencephalography to assess seizure network engagement, modulate network activity, and track changes in excitability and epileptiform abnormalities.

METHODS

Ten individuals with drug resistant epilepsy undergoing clinical stereotactic electroencephalography were enrolled in this retrospective cohort study. Each underwent a trial of high frequency (145 Hz) thalamic stimulation. Pulse evoked potentials were acquired before and after high frequency stimulation. Baseline evoked potential root-mean-square amplitude assessed seizure network engagement, and modulation of amplitude (post high frequency stimulation versus baseline; Cohen's effect size) assessed change in network excitability. Interictal epileptiform discharge rates were measured by an automated classifier at baseline and during high frequency stimulation. Statistical significance was determined using paired-sample t-tests (p<0.05 significance level). This study was approved by the Mayo Clinic Institutional Review Board, with informed consent obtained from all participants.

RESULTS

Thalamic stimulation delivered for >1.5 hours significantly reduced pulse evoked potential amplitudes in connected areas compared to baseline, with the degree of modulation correlated with baseline connectivity strength. Shorter stimulation durations did not induce reliable changes. High frequency stimulation immediately suppressed interictal epileptiform discharge rates in seizure networks with strong baseline thalamocortical connectivity. Pulse evoked potentials delineated the anatomical distribution of network engagement, revealing distinct patterns across thalamic subfields.

CONCLUSION

Pulse evoked potentials and thalamic stimulation during stereotactic electroencephalography provide novel network biomarkers to evaluate target engagement and modulation of large-scale networks across acute and subacute timescales. This approach demonstrates potential for efficient, data-driven neuromodulation optimization, and a new paradigm for personalized deep brain stimulation in epilepsy.

摘要

背景

深部脑刺激对神经系统疾病的临床效果在多个时间尺度上显现,从数秒到数月不等,涉及直接电调制、神经可塑性和网络重组。在癫痫中,深部脑刺激对癫痫发作的延迟效应限制了优化。单脉冲电刺激及其产生的脉冲诱发电位提供了一种测量网络有效连接性和兴奋性的方法。本研究利用立体定向脑电图期间的单脉冲和高频丘脑刺激来评估癫痫发作网络参与情况、调节网络活动,并追踪兴奋性和癫痫样异常的变化。

方法

本回顾性队列研究纳入了10名接受临床立体定向脑电图检查的药物难治性癫痫患者。每人都接受了高频(145赫兹)丘脑刺激试验。在高频刺激前后采集脉冲诱发电位。基线诱发电位均方根振幅评估癫痫发作网络参与情况,振幅调制(高频刺激后与基线相比;科恩效应量)评估网络兴奋性变化。发作间期癫痫样放电率通过自动分类器在基线和高频刺激期间进行测量。使用配对样本t检验确定统计学显著性(显著性水平p<0.05)。本研究经梅奥诊所机构审查委员会批准,所有参与者均获得知情同意。

结果

与基线相比,持续>1.5小时的丘脑刺激显著降低了相连区域的脉冲诱发电位振幅,调制程度与基线连接强度相关。较短的刺激持续时间未引起可靠变化。高频刺激立即抑制了具有强基线丘脑皮质连接的癫痫发作网络中的发作间期癫痫样放电率。脉冲诱发电位描绘了网络参与的解剖分布,揭示了丘脑亚区域的不同模式。

结论

立体定向脑电图期间的脉冲诱发电位和丘脑刺激提供了新的网络生物标志物,以评估急性和亚急性时间尺度上的靶点参与情况和大规模网络的调制。这种方法显示了高效、数据驱动的神经调制优化的潜力,以及癫痫个性化深部脑刺激的新范式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/11887772/609db81edd56/nihpp-2024.03.03.24303480v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索