Suppr超能文献

诱导和量化人类皮质网络的兴奋性变化。

Induction and Quantification of Excitability Changes in Human Cortical Networks.

机构信息

Department of Neurosurgery,

Department of Psychiatry and Behavioral Sciences.

出版信息

J Neurosci. 2018 Jun 6;38(23):5384-5398. doi: 10.1523/JNEUROSCI.1088-17.2018. Epub 2018 May 21.

Abstract

How does human brain stimulation result in lasting changes in cortical excitability? Uncertainty on this question hinders the development of personalized brain stimulation therapies. To characterize how cortical excitability is altered by stimulation, we applied repetitive direct electrical stimulation in eight human subjects (male and female) undergoing intracranial monitoring. We evaluated single-pulse corticocortical-evoked potentials (CCEPs) before and after repetitive stimulation across prefrontal ( = 4), temporal ( = 1), and motor ( = 3) cortices. We asked whether a single session of repetitive stimulation was sufficient to induce excitability changes across distributed cortical sites. We found a subset of regions at which 10 Hz prefrontal repetitive stimulation resulted in both potentiation and suppression of excitability that persisted for at least 10 min. We then asked whether these dynamics could be modeled by the prestimulation connectivity profile of each subject. We found that cortical regions (1) anatomically close to the stimulated site and (2) exhibiting high-amplitude CCEPs underwent changes in excitability following repetitive stimulation. We demonstrate high accuracy (72-95%) and discriminability (81-99%) in predicting regions exhibiting changes using individual subjects' prestimulation connectivity profile, and show that adding prestimulation connectivity features significantly improved model performance. The same features predicted regions of modulation following motor and temporal cortices stimulation in an independent dataset. Together, baseline connectivity profile can be used to predict regions susceptible to brain changes and provides a basis for personalizing brain stimulation. Brain stimulation is increasingly used to treat neuropsychiatric disorders by inducing excitability changes at specific brain regions. However, our understanding of how, when, and where these changes are induced is critically lacking. We inferred plasticity in the human brain after applying electrical stimulation to the brain's surface and measuring changes in excitability. We observed excitability changes in regions anatomically and functionally closer to the stimulation site. Those in responsive regions were accurately predicted using a classifier trained on baseline brain network characteristics. Finally, we showed that the excitability changes can potentially be monitored in real-time. These results begin to fill basic gaps in our understanding of stimulation-induced brain dynamics in humans and offer pathways to optimize stimulation protocols.

摘要

人类大脑刺激如何导致皮质兴奋性的持久变化?这个问题的不确定性阻碍了个性化脑刺激疗法的发展。为了描述刺激如何改变皮质兴奋性,我们在 8 名接受颅内监测的人类受试者(男性和女性)中应用重复的直接电刺激。我们在额(=4)、颞(=1)和运动(=3)皮质之前和之后评估了单次皮质-皮质诱发电位(CCEPs)。我们询问单次重复刺激是否足以在分布的皮质部位诱导兴奋性变化。我们发现,在额皮质的 10 Hz 重复刺激下,有一部分区域既增强了兴奋性,又抑制了兴奋性,这种变化至少持续了 10 分钟。然后,我们询问这些动态是否可以通过每个受试者的刺激前连通性特征来建模。我们发现,皮质区域(1)与刺激部位解剖上接近,(2)表现出高振幅 CCEPs,在重复刺激后兴奋性发生变化。我们使用个体受试者的刺激前连通性特征,在预测表现出变化的区域方面表现出高准确性(72-95%)和可区分性(81-99%),并表明添加刺激前连通性特征显著提高了模型性能。相同的特征可以预测在独立数据集在运动和颞皮质刺激后调制的区域。总之,基线连通性特征可用于预测易受大脑变化影响的区域,并为个性化脑刺激提供基础。脑刺激通过在特定脑区诱导兴奋性变化,越来越多地用于治疗神经精神障碍。然而,我们对这些变化是如何、何时以及何地产生的理解严重不足。我们在向大脑表面施加电刺激并测量兴奋性变化后,推断了人类大脑的可塑性。我们观察到与刺激部位在解剖和功能上更接近的区域的兴奋性变化。使用基于基线大脑网络特征训练的分类器,可以准确预测响应区域的变化。最后,我们表明可以实时监测兴奋性变化。这些结果开始填补我们对人类刺激诱导大脑动力学理解的基本空白,并为优化刺激方案提供途径。

相似文献

1
Induction and Quantification of Excitability Changes in Human Cortical Networks.
J Neurosci. 2018 Jun 6;38(23):5384-5398. doi: 10.1523/JNEUROSCI.1088-17.2018. Epub 2018 May 21.
2
Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity.
J Neurosci. 2019 Jul 31;39(31):6122-6135. doi: 10.1523/JNEUROSCI.0535-19.2019. Epub 2019 Jun 10.
4
Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation.
Neuroimage. 2020 Oct 15;220:117059. doi: 10.1016/j.neuroimage.2020.117059. Epub 2020 Jun 17.
5
Electrical Stimulation of Temporal and Limbic Circuitry Produces Distinct Responses in Human Ventral Temporal Cortex.
J Neurosci. 2023 Jun 14;43(24):4434-4447. doi: 10.1523/JNEUROSCI.1325-22.2023. Epub 2023 May 15.
6
Functional connectivity in the human language system: a cortico-cortical evoked potential study.
Brain. 2004 Oct;127(Pt 10):2316-30. doi: 10.1093/brain/awh246. Epub 2004 Jul 21.
8
Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy.
Seizure. 2017 Jan;44:27-36. doi: 10.1016/j.seizure.2016.11.003. Epub 2016 Nov 14.
9
Inducing neuroplasticity through intracranial θ-burst stimulation in the human sensorimotor cortex.
J Neurophysiol. 2021 Nov 1;126(5):1723-1739. doi: 10.1152/jn.00320.2021. Epub 2021 Oct 13.
10
Effects of stimulation intensity on intracranial cortico-cortical evoked potentials: A titration study.
Clin Neurophysiol. 2021 Nov;132(11):2766-2777. doi: 10.1016/j.clinph.2021.08.008. Epub 2021 Sep 1.

引用本文的文献

2
Failure modes and mitigations for Bayesian optimization of neuromodulation parameters.
J Neural Eng. 2025 Jun 13;22(3):036038. doi: 10.1088/1741-2552/ade189.
3
Closed-loop control of theta oscillations enhances human hippocampal network connectivity.
Nat Commun. 2025 Apr 30;16(1):4061. doi: 10.1038/s41467-025-59417-7.
4
Macroscale Traveling Waves Evoked by Single-Pulse Stimulation of the Human Brain.
J Neurosci. 2025 May 21;45(21):e1504242025. doi: 10.1523/JNEUROSCI.1504-24.2025.
6
Resting fMRI-guided TMS evokes subgenual anterior cingulate response in depression.
Neuroimage. 2025 Jan;305:120963. doi: 10.1016/j.neuroimage.2024.120963. Epub 2024 Dec 3.
8
Theta-burst direct electrical stimulation remodels human brain networks.
Nat Commun. 2024 Aug 14;15(1):6982. doi: 10.1038/s41467-024-51443-1.
9
Mapping cortical excitability in the human dorsolateral prefrontal cortex.
Clin Neurophysiol. 2024 Aug;164:138-148. doi: 10.1016/j.clinph.2024.05.008. Epub 2024 May 27.

本文引用的文献

2
Tuning face perception with electrical stimulation of the fusiform gyrus.
Hum Brain Mapp. 2017 Jun;38(6):2830-2842. doi: 10.1002/hbm.23543. Epub 2017 Mar 27.
3
iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data.
J Neurosci Methods. 2017 Apr 1;281:40-48. doi: 10.1016/j.jneumeth.2017.01.022. Epub 2017 Feb 10.
4
Repetitive Transcranial Magnetic Stimulation of the Brain: Mechanisms from Animal and Experimental Models.
Neuroscientist. 2017 Feb;23(1):82-94. doi: 10.1177/1073858415618897. Epub 2016 Jul 9.
6
Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS.
Neuroimage. 2015 Sep;118:209-18. doi: 10.1016/j.neuroimage.2015.06.004. Epub 2015 Jun 5.
7
Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep.
Neuroimage. 2015 May 15;112:105-113. doi: 10.1016/j.neuroimage.2015.02.056. Epub 2015 Mar 4.
10
Mapping human brain networks with cortico-cortical evoked potentials.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0528.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验