Kwon Yumi, Woo Jongmin, Yu Fengchao, Williams Sarah M, Markillie Lye Meng, Moore Ronald J, Nakayasu Ernesto S, Chen Jing, Campbell-Thompson Martha, Mathews Clayton E, Nesvizhskii Alexey I, Qian Wei-Jun, Zhu Ying
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States.
Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States.
bioRxiv. 2024 Jul 10:2024.03.04.583367. doi: 10.1101/2024.03.04.583367.
Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.
组织微环境的多重双分子分析,即空间组学,可以深入洞察健康组织和患病组织中的细胞组成及相互作用。蛋白质组规模的组织图谱绘制旨在无偏倚地可视化整个组织切片或感兴趣区域中的所有蛋白质,因其在直接揭示诊断生物标志物和治疗靶点方面具有巨大潜力而备受关注。然而,尽管有多种方法可用,但蛋白质组图谱绘制在蛋白质覆盖范围和分析通量方面仍面临重大技术挑战。由于这些现有挑战中的许多都与基于质谱的蛋白质鉴定和定量有关,我们对三种用于空间蛋白质组图谱绘制的蛋白质定量方法进行了详细的基准研究,包括无标记法、TMT-MS2和TMT-MS3。我们的研究表明,无标记法在50 µm的空间分辨率下提供了约3500种蛋白质的最深覆盖范围和最高的定量动态范围,而TMT-MS2方法在每天>125个像素的图谱绘制通量方面具有很大优势。评估还表明,无标记法和TMT-MS2在鉴定差异丰富的蛋白质和空间共变簇方面都能提供可靠的蛋白质定量。在胰岛微环境的研究中,我们证明深度蛋白质组图谱绘制不仅能够鉴定不同细胞类型特有的蛋白质标志物,更重要的是,它还能通过空间共表达分析揭示未知或隐藏的蛋白质模式。