Suppr超能文献

一种基于图像缩放的有效视频概要方法。

An Effective Video Synopsis Approach with Seam Carving.

作者信息

Li Ke, Yan Bo, Wang Weiyi, Gharavi Hamid

机构信息

School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.

National Institute of Standards and Technology, Gaithersburg, MD, 20899 USA.

出版信息

IEEE Signal Process Lett. 2016 Jan;23(1). doi: 10.1109/lsp.2015.2496558.

Abstract

With a growth of surveillance cameras, the amount of captured videos expands. Manually analyzing and retrieving surveillance video is labor intensive and expensive. It would be much more convenient to generate a video digest, with which we can view the video in a fast and motion-preserving way. In this paper, we propose a novel video synopsis approach to generate condensed video, which uses an object tracking method for extracting important objects. This method will generate video tubes and a seam carving method to condense the original video. Experimental results demonstrate that our proposed method can achieve a high condensation rate while preserving all the important objects of interest. Therefore, this approach can enable users to view the surveillance video with great efficiency.

摘要

随着监控摄像头数量的增加,所捕获视频的数量也在扩大。手动分析和检索监控视频既费力又昂贵。生成视频摘要会方便得多,通过它我们可以以快速且保留动态的方式查看视频。在本文中,我们提出了一种新颖的视频概要方法来生成浓缩视频,该方法使用对象跟踪方法来提取重要对象。此方法将生成视频管,并使用接缝雕刻方法来浓缩原始视频。实验结果表明,我们提出的方法在保留所有重要感兴趣对象的同时,可以实现较高的浓缩率。因此,这种方法可以让用户高效地查看监控视频。

相似文献

1
An Effective Video Synopsis Approach with Seam Carving.
IEEE Signal Process Lett. 2016 Jan;23(1). doi: 10.1109/lsp.2015.2496558.
2
Video condensation by ribbon carving.
IEEE Trans Image Process. 2009 Nov;18(11):2572-83. doi: 10.1109/TIP.2009.2026677. Epub 2009 Jul 6.
3
Compact video synopsis via global spatiotemporal optimization.
IEEE Trans Vis Comput Graph. 2013 Oct;19(10):1664-76. doi: 10.1109/TVCG.2012.176.
4
Depth-aware image seam carving.
IEEE Trans Cybern. 2013 Oct;43(5):1453-61. doi: 10.1109/TCYB.2013.2273270. Epub 2013 Jul 22.
5
Surveillance Video Synopsis via Scaling Down Objects.
IEEE Trans Image Process. 2016 Feb;25(2):740-55. doi: 10.1109/TIP.2015.2507942. Epub 2015 Dec 11.
6
Rearranging Online Tubes for Streaming Video Synopsis: A Dynamic Graph Coloring Approach.
IEEE Trans Image Process. 2019 Aug;28(8):3873-3884. doi: 10.1109/TIP.2019.2903322. Epub 2019 Mar 8.
7
Multi-View Video Synopsis via Simultaneous Object-Shifting and View-Switching Optimization.
IEEE Trans Image Process. 2019 Sep 4. doi: 10.1109/TIP.2019.2938086.
8
User Preference-Based Video Synopsis Using Person Appearance and Motion Descriptions.
Sensors (Basel). 2023 Jan 30;23(3):1521. doi: 10.3390/s23031521.
9
Real-Time Video Synopsis via Dynamic and Adaptive Online Tube Resizing.
Sensors (Basel). 2022 Nov 22;22(23):9046. doi: 10.3390/s22239046.
10
Video Synopsis in Complex Situations.
IEEE Trans Image Process. 2018 Aug;27(8):3798-3812. doi: 10.1109/TIP.2018.2823420.

本文引用的文献

1
Video condensation by ribbon carving.
IEEE Trans Image Process. 2009 Nov;18(11):2572-83. doi: 10.1109/TIP.2009.2026677. Epub 2009 Jul 6.
2
Nonchronological video synopsis and indexing.
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):1971-84. doi: 10.1109/TPAMI.2008.29.
3
Dynamosaicing: mosaicing of dynamic scenes.
IEEE Trans Pattern Anal Mach Intell. 2007 Oct;29(10):1789-801. doi: 10.1109/TPAMI.2007.1091.
4
Effective gaussian mixture learning for video background subtraction.
IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):827-32. doi: 10.1109/TPAMI.2005.102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验