Suppr超能文献

仿生纳米载体介导的肿瘤内靶向耗竭与 PD-L1 阻断联合作用对抗乳腺癌。

Biomimetic Nanovehicle-Enabled Targeted Depletion of Intratumoral Synergizes with PD-L1 Blockade against Breast Cancer.

机构信息

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.

Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

出版信息

ACS Nano. 2024 Mar 26;18(12):8971-8987. doi: 10.1021/acsnano.3c12687. Epub 2024 Mar 18.

Abstract

Immune checkpoint blockade (ICB) therapy has been approved for breast cancer (BC), but clinical response rates are limited. Recent studies have shown that commensal microbes colonize a variety of tumors and are closely related to the host immune system response. Here, we demonstrated that (), which is prevalent in BC, creates an immunosuppressive tumor microenvironment (ITME) characterized by a high-influx of myeloid cells that hinders ICB therapy. Administering the antibiotic metronidazole in BC can deplete and remodel the ITME. To prevent an imbalance in the systemic microbiota caused by antibiotic administration, we designed a biomimetic nanovehicle for on-site antibiotic delivery inspired by homing to BC. Additionally, ferritin-nanocaged doxorubicin was coloaded into this nanovehicle, as immunogenic chemotherapy has shown potential for synergy with ICB. It has been demonstrated that this biomimetic nanovehicle can be precisely homed to BC and efficiently eliminate intratumoral without disrupting the diversity and abundance of systemic microbiota. This ultimately remodels the ITME, improving the therapeutic efficacy of the PD-L1 blocker with a tumor inhibition rate of over 90% and significantly extending the median survival of 4T1 tumor-bearing mice.

摘要

免疫检查点阻断 (ICB) 疗法已被批准用于乳腺癌 (BC),但临床反应率有限。最近的研究表明,共生微生物定植于多种肿瘤,并与宿主免疫系统反应密切相关。在这里,我们证明了在 BC 中普遍存在的 () 会产生具有高髓系细胞流入的免疫抑制性肿瘤微环境 (ITME),这阻碍了 ICB 治疗。在 BC 中使用抗生素甲硝唑可以耗尽 () 并重塑 ITME。为了防止抗生素给药引起的系统微生物群落失衡,我们设计了一种仿生纳米载体,用于现场抗生素递送,灵感来自于 () 归巢到 BC。此外,铁蛋白纳米笼载多柔比星被共载入该纳米载体,因为免疫化疗已显示出与 ICB 协同增效的潜力。已经证明,这种仿生纳米载体可以精确归巢到 BC 并有效地消除肿瘤内的 (),而不会破坏系统微生物群落的多样性和丰度。这最终重塑了 ITME,提高了 PD-L1 阻滞剂的治疗效果,肿瘤抑制率超过 90%,并显著延长了 4T1 荷瘤小鼠的中位生存期。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验