Suppr超能文献

自适应间隙可调谐表面增强拉曼光谱

Adaptive Gap-Tunable Surface-Enhanced Raman Spectroscopy.

作者信息

Moon Taeyoung, Joo Huitae, Das Bamadev, Koo Yeonjeong, Kang Mingu, Lee Hyeongwoo, Kim Sunghwan, Chen Cheng, Suh Yung Doug, Kim Dai-Sik, Park Kyoung-Duck

机构信息

Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

出版信息

Nano Lett. 2024 Mar 27;24(12):3777-3784. doi: 10.1021/acs.nanolett.4c00289. Epub 2024 Mar 18.

Abstract

Gap plasmon (GP) resonance in static surface-enhanced Raman spectroscopy (SERS) structures is generally too narrow and not tunable. Here, we present an adaptive gap-tunable SERS device to selectively enhance and modulate different vibrational modes via active flexible Au nanogaps, with adaptive optical control. The tunability of GP resonance is up to ∼1200 cm by engineering gap width, facilitated by mechanical bending of a polyethylene terephthalate substrate. We confirm that the tuned GP resonance selectively enhances different Raman spectral regions of the molecules. Additionally, we dynamically control the SERS intensity through the wavefront shaping of excitation beams. Furthermore, we demonstrate simulation results, exhibiting the mechanical and optical properties of a one-dimensional flexible nanogap and their advantage in high-speed biomedical sensing. Our work provides a unique approach for observing and controlling the enhanced chemical responses with dynamic tunability.

摘要

静态表面增强拉曼光谱(SERS)结构中的能隙等离子体(GP)共振通常过于狭窄且不可调谐。在此,我们展示了一种自适应能隙可调谐SERS装置,通过主动灵活的金纳米间隙以及自适应光学控制,选择性地增强和调制不同的振动模式。通过设计间隙宽度,GP共振的可调谐性高达约1200 cm,这得益于聚对苯二甲酸乙二醇酯基底的机械弯曲。我们证实,调谐后的GP共振选择性地增强了分子的不同拉曼光谱区域。此外,我们通过激发光束的波前整形动态控制SERS强度。此外,我们展示了模拟结果,展示了一维柔性纳米间隙的机械和光学特性及其在高速生物医学传感中的优势。我们的工作为观察和控制具有动态可调性的增强化学反应提供了一种独特的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验