Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
Microbiol Spectr. 2024 May 2;12(5):e0406823. doi: 10.1128/spectrum.04068-23. Epub 2024 Mar 18.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) could aid the diagnosis of acute respiratory infections (ARIs) owing to its affordability and high-throughput capacity. MALDI-TOF MS has been proposed for use on commonly available respiratory samples, without specialized sample preparation, making this technology especially attractive for implementation in low-resource regions. Here, we assessed the utility of MALDI-TOF MS in differentiating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vs non-COVID acute respiratory infections (NCARIs) in a clinical lab setting in Kazakhstan. Nasopharyngeal swabs were collected from inpatients and outpatients with respiratory symptoms and from asymptomatic controls (ACs) in 2020-2022. PCR was used to differentiate SARS-CoV-2+ and NCARI cases. MALDI-TOF MS spectra were obtained for a total of 252 samples (115 SARS-CoV-2+, 98 NCARIs, and 39 ACs) without specialized sample preparation. In our first sub-analysis, we followed a published protocol for peak preprocessing and machine learning (ML), trained on publicly available spectra from South American SARS-CoV-2+ and NCARI samples. In our second sub-analysis, we trained ML models on a peak intensity matrix representative of both South American (SA) and Kazakhstan (Kaz) samples. Applying the established MALDI-TOF MS pipeline "as is" resulted in a high detection rate for SARS-CoV-2+ samples (91.0%), but low accuracy for NCARIs (48.0%) and ACs (67.0%) by the top-performing random forest model. After re-training of the ML algorithms on the SA-Kaz peak intensity matrix, the accuracy of detection by the top-performing support vector machine with radial basis function kernel model was at 88.0%, 95.0%, and 78% for the Kazakhstan SARS-CoV-2+, NCARI, and AC subjects, respectively, with a SARS-CoV-2 vs rest receiver operating characteristic area under the curve of 0.983 [0.958, 0.987]; a high differentiation accuracy was maintained for the South American SARS-CoV-2 and NCARIs. MALDI-TOF MS/ML is a feasible approach for the differentiation of ARI without specialized sample preparation. The implementation of MALDI-TOF MS/ML in a real clinical lab setting will necessitate continuous optimization to keep up with the rapidly evolving landscape of ARI.IMPORTANCEIn this proof-of-concept study, the authors used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning (ML) to identify and distinguish acute respiratory infections (ARI) caused by SARS-CoV-2 versus other pathogens in low-resource clinical settings, without the need for specialized sample preparation. The ML models were trained on a varied collection of MALDI-TOF MS spectra from studies conducted in Kazakhstan and South America. Initially, the MALDI-TOF MS/ML pipeline, trained exclusively on South American samples, exhibited diminished effectiveness in recognizing non-SARS-CoV-2 infections from Kazakhstan. Incorporation of spectral signatures from Kazakhstan substantially increased the accuracy of detection. These results underscore the potential of employing MALDI-TOF MS/ML in resource-constrained settings to augment current approaches for detecting and differentiating ARI.
基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)由于其价格合理和高通量能力,可辅助诊断急性呼吸道感染(ARIs)。MALDI-TOF MS 已被提议用于通常可获得的呼吸道样本,而无需专门的样本制备,这使得该技术特别适合在资源匮乏的地区实施。在这里,我们评估了 MALDI-TOF MS 在哈萨克斯坦临床实验室环境中区分严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)与非 COVID 急性呼吸道感染(NCARIs)的效用。2020-2022 年,从有呼吸道症状的住院患者和门诊患者以及无症状对照者(ACs)中采集鼻咽拭子。PCR 用于区分 SARS-CoV-2+和 NCARI 病例。未经专门的样本制备,共获得了 252 个样本(115 个 SARS-CoV-2+、98 个 NCARIs 和 39 个 ACs)的 MALDI-TOF MS 光谱。在我们的第一个子分析中,我们遵循了已发表的用于峰预处理和机器学习(ML)的协议,该协议是基于南美 SARS-CoV-2+和 NCARI 样本的公开光谱进行训练的。在我们的第二个子分析中,我们使用代表南美(SA)和哈萨克斯坦(Kaz)样本的峰强度矩阵对 ML 模型进行了训练。应用既定的 MALDI-TOF MS 管道“原样”,通过表现最佳的随机森林模型,SARS-CoV-2+样本的检测率很高(91.0%),但 NCARI(48.0%)和 AC(67.0%)的准确性较低。在重新训练了基于 SA-Kaz 峰强度矩阵的 ML 算法后,表现最佳的支持向量机与径向基函数核模型的检测准确性分别为 88.0%、95.0%和 78%,适用于哈萨克斯坦 SARS-CoV-2+、NCARI 和 AC 受试者,SARS-CoV-2 与其余受试者的接收器工作特征曲线下面积为 0.983 [0.958,0.987];对南美 SARS-CoV-2 和 NCARIs 的区分准确性仍然很高。MALDI-TOF MS/ML 是一种可行的方法,无需专门的样本制备即可区分 ARI。MALDI-TOF MS/ML 在真实临床实验室环境中的实施将需要不断优化,以跟上 ARI 的快速发展。
在这项概念验证研究中,作者使用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)和机器学习(ML)来识别和区分低资源临床环境中由 SARS-CoV-2 引起的急性呼吸道感染(ARI)与其他病原体,而无需专门的样本准备。ML 模型是基于哈萨克斯坦和南美的研究中收集的各种 MALDI-TOF MS 光谱进行训练的。最初,仅针对南美样本进行训练的 MALDI-TOF MS/ML 管道在识别哈萨克斯坦的非 SARS-CoV-2 感染方面效果不佳。纳入哈萨克斯坦的光谱特征大大提高了检测的准确性。这些结果强调了在资源有限的环境中使用 MALDI-TOF MS/ML 来增强当前检测和区分 ARI 的方法的潜力。