Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.
J Chem Inf Model. 2024 Apr 22;64(8):3114-3122. doi: 10.1021/acs.jcim.4c00056. Epub 2024 Mar 18.
Acute oral toxicity (AOT) is required for the classification and labeling of chemicals according to the global harmonized system (GHS). Acute oral toxicity studies are optimized to minimize the use of animals. However, with the advent of the three principles and machine learning in toxicology, alternative in silico methods became a reasonable alternative approach for addressing the AOT of new chemical matter. Here, we describe the compilation of AOT data from a commercial database and the development of a consensus classification model after evaluating different combinations of molecular representations and machine learning algorithms. The model shows significantly better performance compared to publicly available AOT models. Its performance was evaluated on an external validation data set, which was compiled from the literature, and an applicability domain was deduced.
根据全球协调系统(GHS),化学品的分类和标签需要进行急性口服毒性(AOT)测试。急性口服毒性研究旨在优化以最大程度减少动物的使用。然而,随着三原则和毒理学中的机器学习的出现,替代的计算方法成为解决新化学物质的 AOT 的合理替代方法。在这里,我们描述了从商业数据库中编译 AOT 数据,并在评估不同的分子表示和机器学习算法组合后开发共识分类模型。与现有的 AOT 模型相比,该模型的性能显著提高。我们在外部验证数据集上评估了其性能,该数据集是从文献中编译的,并推导出了适用域。