Suppr超能文献

通过机器学习对哺乳动物急性口服毒性的驱动因素进行分析及其预测。

Profiling mechanisms that drive acute oral toxicity in mammals and its prediction via machine learning.

机构信息

Dow, Inc., Midland, Michigan 48642, USA.

出版信息

Toxicol Sci. 2023 May 12;193(1):18-30. doi: 10.1093/toxsci/kfad025.

Abstract

We present a mechanistic machine-learning quantitative structure-activity relationship (QSAR) model to predict mammalian acute oral toxicity. We trained our model using a rat acute toxicity database compiled by the US National Toxicology Program. We profiled the database using new and published profilers and identified the most plausible mechanisms that drive high acute toxicity (LD50 ≤ 50 mg/kg; GHS categories 1 or 2). Our QSAR model assigns primary mechanisms to compounds, followed by predicting their acute oral LD50 using a random-forest machine-learning model. These predictions were further refined based on structural and mechanistic read-across to substances within the training set. Our model is optimized for sensitivity and aims to minimize the likelihood of underpredicting the toxicity of assessed compounds. It displays high sensitivity (76.1% or 76.6% for compounds in GHS 1-2 or GHS 1-3 categories, respectively), coupled with ≥73.7% balanced accuracy. We further demonstrate the utility of undertaking a mechanistic approach when predicting the toxicity of compounds acting via a rare mode of action (MOA) (aconitase inhibition). The mechanistic profilers and framework of our QSAR model are route- and toxicity endpoint-agnostic, allowing for future applications to other endpoints and routes of administration. Furthermore, we present a preliminary exploration of the potential role of metabolic clearance in acute toxicity. To the best of our knowledge, this effort represents the first accurate mechanistic QSAR model for acute oral toxicity that combines machine learning with MOA assignment, while also seeking to minimize underprediction of more highly potent substances.

摘要

我们提出了一种基于机制的机器学习定量构效关系(QSAR)模型,用于预测哺乳动物急性口服毒性。我们使用美国国家毒理学计划编制的大鼠急性毒性数据库对我们的模型进行了训练。我们使用新的和已发表的剖析器对数据库进行了剖析,并确定了最可能的机制,这些机制导致了高急性毒性(LD50≤50mg/kg;GHS 类别 1 或 2)。我们的 QSAR 模型将主要机制分配给化合物,然后使用随机森林机器学习模型预测其急性口服 LD50。这些预测进一步基于结构和机制的读效应对训练集中的物质进行了细化。我们的模型针对灵敏度进行了优化,旨在最大程度地减少对评估化合物毒性预测不足的可能性。它具有较高的灵敏度(GHS 1-2 或 GHS 1-3 类别的化合物分别为 76.1%或 76.6%),同时具有≥73.7%的平衡准确性。我们进一步证明了在预测通过罕见作用模式(MOA)作用的化合物的毒性时,采用机制方法的实用性( aconitase 抑制)。我们的 QSAR 模型的机制剖析器和框架与途径和毒性终点无关,允许将来应用于其他终点和给药途径。此外,我们还初步探讨了代谢清除在急性毒性中的潜在作用。据我们所知,这是第一个将机器学习与 MOA 分配相结合的用于急性口服毒性的准确机制 QSAR 模型,同时还试图最小化对更高效物质的预测不足。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验