Suppr超能文献

一种稳健的因果脑网络测量方法及其在耐药性癫痫发作期脑电图分析中的应用。

A Robust Causal Brain Network Measure and Its Application on Ictal Electrocorticogram Analysis of Drug-resistant Epilepsy.

作者信息

Wang Yalin, Lin Wentao, Peng Hong, Zhou Ligang, Chen Wei, Hu Bin

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024 Mar 18;PP. doi: 10.1109/TNSRE.2024.3378426.

Abstract

Measuring causal brain network is a significant topic for exploring complex brain functions. While various data-driven algorithms have been proposed, they still have some drawbacks such as ignoring time non-separability, cumbersome parameter settings, and poor robustness. To solve these deficiencies, we developed a novel framework: "time-shift permutation cross-mapping, TPCM," integrating steps of (1) delayed improved phase-space reconstruction (DIPSR), (2) rank transformation of embedding vectors' distances, (3) cross-mapping with a fitting estimation, and (4) causality quantification using multi-delays. Based on synthetic models and comparison with baseline methods, numerical validation results demonstrate that TPCM significantly improves the robustness for data length with or without noise interference, and achieves the best quantification accuracy in detecting time delay and coupling strength, with the highest determination coefficient ( R = 0. 96 ) of fitting verse coupling parameters. The developed TPCM was finally applied to ictal electrocorticogram (ECoG) analysis of patients with drug-resistant epilepsy (DRE). A total of 17 patients with DRE were included into the retrospective study. For 8 patients undergoing successful surgeries, the causal coupling strength (0.58 ± 0.20) within epileptogenic zone network is significantly higher than those suffering failed surgeries (0.38 ± 0.16) with P < 0. 001 through Mann-Whitney-U-test. Therefore, the epileptic brain network measured by TPCM is a credible biomarker for predicting surgical outcomes. These findings additionally confirm TPCM's superior performance and promising potential to advance precision medicine for neurological disorders.

摘要

测量因果脑网络是探索复杂脑功能的一个重要课题。虽然已经提出了各种数据驱动算法,但它们仍存在一些缺点,如忽略时间不可分离性、参数设置繁琐以及鲁棒性差等问题。为了解决这些不足,我们开发了一种新颖的框架:“时移排列交叉映射,TPCM”,它整合了以下步骤:(1)延迟改进相空间重构(DIPSR),(2)嵌入向量距离的秩变换,(3)拟合估计的交叉映射,以及(4)使用多延迟的因果量化。基于合成模型并与基线方法进行比较,数值验证结果表明,TPCM显著提高了在有无噪声干扰情况下对数据长度的鲁棒性,并且在检测时间延迟和耦合强度方面实现了最佳量化精度,拟合与耦合参数的决定系数最高(R = 0.96)。所开发的TPCM最终应用于耐药性癫痫(DRE)患者的发作期皮质脑电图(ECoG)分析。共有17例DRE患者纳入回顾性研究。通过Mann-Whitney-U检验,对于8例手术成功的患者,致痫区网络内的因果耦合强度(0.58±0.20)显著高于手术失败的患者(0.38±0.16),P < 0.001。因此,通过TPCM测量的癫痫脑网络是预测手术结果的可靠生物标志物。这些发现进一步证实了TPCM的卓越性能以及在推进神经疾病精准医学方面的广阔潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验