Suppr超能文献

因果脑网络预测耐药性癫痫患者的手术结果:一项回顾性比较研究。

Causal Brain Network Predicts Surgical Outcomes in Patients With Drug-Resistant Epilepsy: A Retrospective Comparative Study.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2719-2726. doi: 10.1109/TNSRE.2024.3433533. Epub 2024 Aug 2.

Abstract

Network neuroscience, especially causal brain network, has facilitated drug-resistant epilepsy (DRE) studies, while surgical success rate in patients with DRE is still limited, varying from 30%  ∼  70 %. Predicting surgical outcomes can provide additional guidance to adjust treatment plans in time for poorly predicted curative effects. In this retrospective study, we aim to systematically explore biomarkers for surgical outcomes by causal brain network methods and multicenter datasets. Electrocorticogram (ECoG) recordings from 17 DRE patients with 58 seizures were included. Ictal ECoG within clinically annotated epileptogenic zone (EZ) and non-epileptogenic zone (NEZ) were separately computed using six different algorithms to construct causal brain networks. All the brain network results were divided into two groups, successful and failed surgeries. Statistical results based on the Mann-Whitney-U-test show that: causal connectivity of α -frequency band ( 8  ∼  13 Hz) in EZ calculated by convergent cross mapping (CCM) gains the most significant differences between the surgical success and failure groups, with a P value of 7.85e-08 and Cohen's d effect size of 0.77. CCM-defined EZ brain network can also distinguish the successful and failed surgeries considering clinical covariates (clinical centers, DRE types) with [Formula: see text]. Based on the brain network features, machine learning models were developed to predict the surgical outcomes. Among them, the SVM classifier with Gaussian kernel function and Bayesian optimization demonstrates the highest average accuracy of 84.48% by 5-fold cross-validation, further indicating that the CCM-defined EZ brain network is a reliable biomarker for predicting DRE surgical outcomes.

摘要

网络神经科学,尤其是因果脑网络,促进了耐药性癫痫(DRE)的研究,而 DRE 患者的手术成功率仍然有限,在 30%70%之间。预测手术结果可以为调整治疗计划提供额外的指导,以改善预测效果不佳的情况。在这项回顾性研究中,我们旨在通过因果脑网络方法和多中心数据集系统地探索手术结果的生物标志物。纳入了 17 名 DRE 患者的 58 次癫痫发作的脑电描记图(ECoG)记录。使用六种不同的算法分别计算临床注释的致痫区(EZ)和非致痫区(NEZ)内的发作期 ECoG,以构建因果脑网络。所有的脑网络结果均分为两组,即手术成功组和手术失败组。基于曼-惠特尼 U 检验的统计结果表明:由会聚交叉映射(CCM)计算的 EZ 中α-频段(813Hz)的因果连通性在手术成功和失败组之间具有最显著的差异,其 P 值为 7.85e-08,Cohen's d 效应大小为 0.77。考虑到临床协变量(临床中心、DRE 类型),CCM 定义的 EZ 脑网络也可以区分手术成功和失败组,其[公式:见正文]。基于脑网络特征,开发了机器学习模型来预测手术结果。其中,具有高斯核函数和贝叶斯优化的 SVM 分类器在 5 折交叉验证中表现出最高的平均准确率 84.48%,进一步表明 CCM 定义的 EZ 脑网络是预测 DRE 手术结果的可靠生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验