Suppr超能文献

探索高路易斯酸性金属与新兴核医学同位素的水相配位化学。

Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine.

机构信息

Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.

出版信息

Acc Chem Res. 2024 Mar 19;57(6):933-944. doi: 10.1021/acs.accounts.3c00781. Epub 2024 Mar 5.

Abstract

Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes Tc and In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous Ga/Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with Sc/Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc ion, the displacement of ternary ligand HO by F can be achieved to form an inert Sc-F bond. Corresponding coordination complex Sc-F is in vivo compatible and forms a theranostic tetrad with corresponding Sc/Sc, Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is Ti. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti and Sc of interest in streamlining the isotope production of Ti and accessing new ways to separate Ti/Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti and Sc, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid Ga or Sc. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.

摘要

核医学利用放射性同位素进行疾病的诊断和治疗。虽然 Tc 和 In 同位素在过去 30 年中已经能够对数百万患者进行临床诊断,但最近将许多基于 Ga/Lu 的放射性药物用于诊断成像和治疗的临床转化,突显了金属基放射性药物在主流癌症治疗中的临床应用。除了这些已建立的放射性核素外,放射性同位素生产的进步还使得能够生产具有广泛半衰期和发射特性的放射性核素,用于核医学。形成动力学惰性、体内相容的物种,并能够用疾病靶向载体进行修饰,这是至关重要的。对于水相化学仍未得到充分发展和理解的元素的放射性同位素来说,这是一个挑战。在这里,我们讨论了迄今为止在探索高度路易斯酸性金属离子的放射性配位化学方面的努力,以及我们的发现如何应用于疾病临床前模型中癌症的诊断和治疗。本账户的范围包括探索具有新兴放射性同位素的高度路易斯酸性金属离子的水溶液配位化学的方法,以及调节放射性配位配合物的已知配位环境以诱导金属催化反应,用于分离和前药应用。首先,我们讨论了七配位、小腔大环螯合剂平台 mpatcn/picaga 的发展,作为一个典型的案例研究,它与 Sc/Sc 同位素形成了坚固的配合物。由于 Sc 离子的化学硬度高和路易斯酸性强,可通过 F 取代三元配体 HO 来形成惰性 Sc-F 键。相应的配位络合物 Sc-F 与体内相容,并与相应的 Sc/Sc、Lu 络合物形成治疗诊断四联体,均表现出同源的生物分布谱。另一种路易斯酸性极强、水相化学尚未充分发展、在核医学中具有新兴应用前景的特别硬的离子是 Ti。为了在水相条件下开发单核螯合这种离子的新方法,我们采用了基于片段的双齿配体筛选方法,该方法确定了两个先导物。该筛选成功预测了[Ti][Ti(TREN-CAM)]的形成,这是一种 Ti-三邻苯二酚络合物,具有显著的体内稳定性。此外,基于片段的筛选还确定了可用于固相分离 Ti 和 Sc 的方法,这对于简化 Ti 的同位素生产以及探索分离 Ti/Sc 的新方法以开发长寿命发生器系统很有意义。除了建立 Ti 和 Sc 的惰性螯合之外,我们还在宏观和放射性示踪剂尺度上引入了相应配位络合物的可控、金属诱导的反应性。金属介导的自动酰胺键断裂 (MMAAC) 能够实现高摩尔活性、随时可注射放射性药物的温度依赖性释放;断裂是通过配位的三价路易斯酸 Ga 或 Sc 选择性触发的。在对反应性和机理研究进行总结后,我们验证了 MMAAC 用于合成高摩尔活性放射性药物,以在体内对低表达的分子靶标进行成像,并对金属介导的前药水解进行成像。本账户总结了如何开发高路易斯酸性金属离子的水溶液配位化学,并在宏观和示踪剂尺度上调节其化学反应性,这直接应用于具有临床潜力的放射性药物合成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验