Suppr超能文献

黄素、NADPH 和活性位点环的动态决定了 B 族黄素依赖性单加氧酶的激活机制。

The dynamics of the flavin, NADPH, and active site loops determine the mechanism of activation of class B flavin-dependent monooxygenases.

机构信息

Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina.

出版信息

Protein Sci. 2024 Apr;33(4):e4935. doi: 10.1002/pro.4935.

Abstract

Flavin-dependent monooxygenases (FMOs) constitute a diverse enzyme family that catalyzes crucial hydroxylation, epoxidation, and Baeyer-Villiger reactions across various metabolic pathways in all domains of life. Due to the intricate nature of this enzyme family's mechanisms, some aspects of their functioning remain unknown. Here, we present the results of molecular dynamics computations, supplemented by a bioinformatics analysis, that clarify the early stages of their catalytic cycle. We have elucidated the intricate binding mechanism of NADPH and L-Orn to a class B monooxygenase, the ornithine hydroxylase from known as SidA. Our investigation involved a comprehensive characterization of the conformational changes associated with the FAD (Flavin Adenine Dinucleotide) cofactor, transitioning from the out to the in position. Furthermore, we explored the rotational dynamics of the nicotinamide ring of NADPH, shedding light on its role in facilitating FAD reduction, supported by experimental evidence. Finally, we also analyzed the extent of conservation of two Tyr-loops that play critical roles in the process.

摘要

黄素依赖单加氧酶(FMOs)构成了一个多样化的酶家族,在所有生命领域的各种代谢途径中,催化关键的羟化、环氧化和 Baeyer-Villiger 反应。由于该酶家族的机制非常复杂,其功能的某些方面仍然未知。在这里,我们展示了分子动力学计算的结果,并辅以生物信息学分析,阐明了它们催化循环的早期阶段。我们阐明了 NADPH 和 L-Orn 与 B 类单加氧酶结合的复杂机制,该酶是SidA 中已知的鸟氨酸羟化酶。我们的研究涉及到与黄素腺嘌呤二核苷酸(FAD)辅因子相关的构象变化的全面特征化,从外到内位置的转变。此外,我们还探索了 NADPH 的烟酰胺环的旋转动力学,实验证据支持其在促进 FAD 还原中的作用。最后,我们还分析了在该过程中起关键作用的两个 Tyr 环的保守程度。

相似文献

2
Trapping conformational states of a flavin-dependent -monooxygenase reveals protein and flavin dynamics.
J Biol Chem. 2020 Sep 18;295(38):13239-13249. doi: 10.1074/jbc.RA120.014750. Epub 2020 Jul 28.
3
Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
Biochemistry. 2020 Dec 8;59(48):4609-4616. doi: 10.1021/acs.biochem.0c00783. Epub 2020 Nov 23.
4
Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
J Biol Chem. 2011 Sep 9;286(36):31789-98. doi: 10.1074/jbc.M111.265876. Epub 2011 Jul 13.
5
Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
Biochim Biophys Acta. 2014 Apr;1844(4):778-84. doi: 10.1016/j.bbapap.2014.02.005. Epub 2014 Feb 15.
7
Flavin oxidation in flavin-dependent N-monooxygenases.
Protein Sci. 2019 Jan;28(1):90-99. doi: 10.1002/pro.3487. Epub 2018 Sep 25.
8
Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
PLoS One. 2021 Mar 30;16(3):e0248385. doi: 10.1371/journal.pone.0248385. eCollection 2021.
10
Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.
Biochemistry. 2010 Aug 10;49(31):6777-83. doi: 10.1021/bi100291n.

引用本文的文献

1
Enhancing Bacillus cereus antibacterial ability through improved cofactor supply.
Microb Cell Fact. 2025 Mar 6;24(1):52. doi: 10.1186/s12934-025-02666-4.

本文引用的文献

1
Using evolutionary data to make sense of macromolecules with a "face-lifted" ConSurf.
Protein Sci. 2023 Mar;32(3):e4582. doi: 10.1002/pro.4582.
2
New frontiers in flavin-dependent monooxygenases.
Arch Biochem Biophys. 2021 Mar 15;699:108765. doi: 10.1016/j.abb.2021.108765. Epub 2021 Jan 16.
3
Protein Sequence Analysis Using the MPI Bioinformatics Toolkit.
Curr Protoc Bioinformatics. 2020 Dec;72(1):e108. doi: 10.1002/cpbi.108.
4
Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
Biochemistry. 2020 Dec 8;59(48):4609-4616. doi: 10.1021/acs.biochem.0c00783. Epub 2020 Nov 23.
5
Trapping conformational states of a flavin-dependent -monooxygenase reveals protein and flavin dynamics.
J Biol Chem. 2020 Sep 18;295(38):13239-13249. doi: 10.1074/jbc.RA120.014750. Epub 2020 Jul 28.
7
Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.
ACS Chem Biol. 2016 Nov 18;11(11):3035-3042. doi: 10.1021/acschembio.6b00666. Epub 2016 Sep 15.
8
Chopping and Changing: the Evolution of the Flavin-dependent Monooxygenases.
J Mol Biol. 2016 Jul 31;428(15):3131-46. doi: 10.1016/j.jmb.2016.07.003. Epub 2016 Jul 14.
9
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
10
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验