Suppr超能文献

使用 ProteinMPNN 对黄素结合荧光蛋白进行重构。

Reengineering of a flavin-binding fluorescent protein using ProteinMPNN.

机构信息

Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia.

出版信息

Protein Sci. 2024 Apr;33(4):e4958. doi: 10.1002/pro.4958.

Abstract

Recent advances in machine learning techniques have led to development of a number of protein design and engineering approaches. One of them, ProteinMPNN, predicts an amino acid sequence that would fold and match user-defined backbone structure. Its performance was previously tested for proteins composed of standard amino acids, as well as for peptide- and protein-binding proteins. In this short report, we test whether ProteinMPNN can be used to reengineer a non-proteinaceous ligand-binding protein, flavin-based fluorescent protein CagFbFP. We fixed the native backbone conformation and the identity of 20 amino acids interacting with the chromophore (flavin mononucleotide, FMN) while letting ProteinMPNN predict the rest of the sequence. The software package suggested replacing 36-48 out of the remaining 86 amino acids so that the resulting sequences are 55%-66% identical to the original one. The three designs that we tested experimentally displayed different expression levels, yet all were able to bind FMN and displayed fluorescence, thermal stability, and other properties similar to those of CagFbFP. Our results demonstrate that ProteinMPNN can be used to generate diverging unnatural variants of fluorescent proteins, and, more generally, to reengineer proteins without losing their ligand-binding capabilities.

摘要

近年来,机器学习技术的进步催生了许多蛋白质设计和工程方法。其中之一是 ProteinMPNN,它可以预测出一个氨基酸序列,该序列能够折叠并与用户定义的骨架结构匹配。其性能之前已经在由标准氨基酸组成的蛋白质以及肽和蛋白质结合蛋白中进行了测试。在本简短报告中,我们测试了 ProteinMPNN 是否可用于重新设计非蛋白配体结合蛋白,即黄素基荧光蛋白 CagFbFP。我们固定了天然骨架构象和与发色团(黄素单核苷酸,FMN)相互作用的 20 个氨基酸的身份,同时让 ProteinMPNN 预测其余序列。软件包建议替换剩余的 86 个氨基酸中的 36-48 个,使得得到的序列与原始序列的相似度为 55%-66%。我们测试的三个设计显示出不同的表达水平,但它们都能够结合 FMN 并显示荧光、热稳定性和其他与 CagFbFP 相似的特性。我们的结果表明,ProteinMPNN 可用于产生具有不同性质的荧光蛋白的非天然变体,更普遍地说,可用于在不丧失配体结合能力的情况下对蛋白质进行重新设计。

相似文献

本文引用的文献

3
Rapid and automated design of two-component protein nanomaterials using ProteinMPNN.使用 ProteinMPNN 快速自动化设计双组份蛋白质纳米材料。
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2314646121. doi: 10.1073/pnas.2314646121. Epub 2024 Mar 19.
6
De novo design of protein structure and function with RFdiffusion.利用 RFdiffusion 从头设计蛋白质结构和功能。
Nature. 2023 Aug;620(7976):1089-1100. doi: 10.1038/s41586-023-06415-8. Epub 2023 Jul 11.
8
10
De novo design of luciferases using deep learning.利用深度学习进行荧光素酶的从头设计。
Nature. 2023 Feb;614(7949):774-780. doi: 10.1038/s41586-023-05696-3. Epub 2023 Feb 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验