School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
School of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
ACS Chem Neurosci. 2024 Apr 3;15(7):1469-1483. doi: 10.1021/acschemneuro.3c00756. Epub 2024 Mar 19.
The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer's disease. Altered metabolism of essential biometals is another feature of Alzheimer's, with amyloid plaques representing sites of disturbed metal homeostasis. Despite these observations, metal-targeting disease treatments have not been therapeutically effective to date. A better understanding of amyloid plaque composition and the role of the metals associated with them is critical. To establish this knowledge, the ability to resolve chemical variations at nanometer length scales relevant to biology is essential. Here, we present a methodology for the label-free, nanoscale chemical characterization of amyloid plaques within human Alzheimer's disease tissue using synchrotron X-ray spectromicroscopy. Our approach exploits a C-H carbon absorption feature, consistent with the presence of lipids, to visualize amyloid plaques selectively against the tissue background, allowing chemical analysis to be performed without the addition of amyloid dyes that alter the native sample chemistry. Using this approach, we show that amyloid plaques contain elevated levels of calcium, carbonates, and iron compared to the surrounding brain tissue. Chemical analysis of iron within plaques revealed the presence of chemically reduced, low-oxidation-state phases, including ferromagnetic metallic iron. The zero-oxidation state of ferromagnetic iron determines its high chemical reactivity and so may contribute to the redox burden in the Alzheimer's brain and thus drive neurodegeneration. Ferromagnetic metallic iron has no established physiological function in the brain and may represent a target for therapies designed to lower redox burdens in Alzheimer's disease. Additionally, ferromagnetic metallic iron has magnetic properties that are distinct from the iron oxide forms predominant in tissue, which might be exploitable for the in vivo detection of amyloid pathologies using magnetically sensitive imaging. We anticipate that this label-free X-ray imaging approach will provide further insights into the chemical composition of amyloid plaques, facilitating better understanding of how plaques influence the course of Alzheimer's disease.
淀粉样斑块的积累和大脑氧化还原负担的增加是阿尔茨海默病的神经病理学标志。必需生物金属代谢的改变是阿尔茨海默病的另一个特征,淀粉样斑块代表了金属动态平衡失调的部位。尽管有这些观察结果,但迄今为止,针对金属的疾病治疗方法并没有在治疗上取得效果。更好地了解淀粉样斑块的组成以及与它们相关的金属的作用至关重要。为了建立这些知识,解析与生物学相关的纳米级化学变化的能力是必不可少的。在这里,我们提出了一种使用同步辐射 X 射线光谱显微镜对人阿尔茨海默病组织内的淀粉样斑块进行无标记、纳米级化学特征分析的方法。我们的方法利用 C-H 碳吸收特征,与脂质的存在一致,有选择地将淀粉样斑块可视化,与组织背景形成对比,从而可以在不添加改变天然样本化学性质的淀粉样斑块染料的情况下进行化学分析。使用这种方法,我们发现与周围脑组织相比,淀粉样斑块中含有更高水平的钙、碳酸盐和铁。对斑块内铁的化学分析表明,存在化学还原的低氧化态相,包括铁磁性金属铁。铁磁性金属铁的零氧化态决定了其高化学反应性,因此可能导致阿尔茨海默病大脑中的氧化还原负担增加,并进而导致神经退行性变。铁磁性金属铁在大脑中没有既定的生理功能,可能代表着一种针对旨在降低阿尔茨海默病氧化还原负担的治疗方法的靶点。此外,铁磁性金属铁具有与组织中主要存在的氧化铁形式不同的磁性,这可能可用于使用对磁性敏感的成像技术对淀粉样病变进行体内检测。我们预计,这种无标记 X 射线成像方法将为淀粉样斑块的化学组成提供更多的见解,有助于更好地了解斑块如何影响阿尔茨海默病的进程。