Suppr超能文献

基因融合促进有序和温敏性结构单元设计杂化生物材料。

Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials.

机构信息

Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States.

Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States.

出版信息

Chemistry. 2024 May 28;30(30):e202400582. doi: 10.1002/chem.202400582. Epub 2024 Apr 10.

Abstract

The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.

摘要

无规蛋白(IDPs)及其重组衍生物——无规蛋白聚合物(IDPPs)具有独特的物理化学性质,为生产多刺激响应材料提供了机会;它们的序列编码无序和相分离倾向促进了多功能材料的发展。本综述重点介绍了通过与有序结构域(如螺旋或β-折叠结构域)的基因融合来增强弹性蛋白样多肽(ELPs)和松弛素样多肽(RLPs)及其自组装结构的结构多样性的策略。特别是,本综述描述了利用促进有序和热响应构建模块之间的协同相互作用来设计杂化生物材料的方法,从而得到结构良好、对刺激有响应的纳米级有序超分子材料。

相似文献

1
Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials.
Chemistry. 2024 May 28;30(30):e202400582. doi: 10.1002/chem.202400582. Epub 2024 Apr 10.
2
Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials.
Macromol Biosci. 2021 Sep;21(9):e2100129. doi: 10.1002/mabi.202100129. Epub 2021 Jun 18.
3
Elastin-like polypeptides as models of intrinsically disordered proteins.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2477-86. doi: 10.1016/j.febslet.2015.08.029. Epub 2015 Aug 29.
4
Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers.
J Pept Sci. 2022 Jan;28(1):e3362. doi: 10.1002/psc.3362. Epub 2021 Sep 20.
5
Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins.
Biomacromolecules. 2023 Mar 13;24(3):1244-1257. doi: 10.1021/acs.biomac.2c01309. Epub 2023 Feb 9.
6
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
7
Programmability and biomedical utility of intrinsically-disordered protein polymers.
Adv Drug Deliv Rev. 2024 Sep;212:115418. doi: 10.1016/j.addr.2024.115418. Epub 2024 Jul 31.
8
Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.
Biochemistry. 2018 May 1;57(17):2405-2414. doi: 10.1021/acs.biochem.8b00056. Epub 2018 Apr 23.
10
Trends in the design and use of elastin-like recombinamers as biomaterials.
Matrix Biol. 2019 Nov;84:111-126. doi: 10.1016/j.matbio.2019.07.003. Epub 2019 Jul 6.

引用本文的文献

2
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
3
Recombinant fibrous protein biomaterials meet skin tissue engineering.
Front Bioeng Biotechnol. 2024 Aug 14;12:1411550. doi: 10.3389/fbioe.2024.1411550. eCollection 2024.

本文引用的文献

1
Expanding the molecular language of protein liquid-liquid phase separation.
Nat Chem. 2024 Jul;16(7):1113-1124. doi: 10.1038/s41557-024-01489-x. Epub 2024 Mar 29.
3
Encoding Structure in Intrinsically Disordered Protein Biomaterials.
Acc Chem Res. 2024 Feb 6;57(3):302-311. doi: 10.1021/acs.accounts.3c00624. Epub 2024 Jan 9.
6
Sequence-Encoded Differences in Phase Separation Enable Formation of Resilin-like Polypeptide-Based Microstructured Hydrogels.
Biomacromolecules. 2023 Aug 14;24(8):3729-3741. doi: 10.1021/acs.biomac.3c00418. Epub 2023 Jul 31.
7
Real-time measure of solvation free energy changes upon liquid-liquid phase separation of α-elastin.
Biophys J. 2024 Jun 4;123(11):1367-1375. doi: 10.1016/j.bpj.2023.07.023. Epub 2023 Jul 28.
8
Temperature-responsive membrane permeability of recombinant fusion protein vesicles.
Soft Matter. 2023 May 10;19(18):3273-3280. doi: 10.1039/d3sm00096f.
9
Light-Responsive Elastin-Like Peptide-Based Targeted Nanoparticles for Enhanced Spheroid Penetration.
Angew Chem Int Ed Engl. 2023 Jun 12;62(24):e202300511. doi: 10.1002/anie.202300511. Epub 2023 May 8.
10
Genetic Fusion of Thermoresponsive Polypeptides with UCST-type Behavior Mediates 1D Assembly of Coiled-Coil Bundlemers.
Angew Chem Int Ed Engl. 2023 Jun 19;62(25):e202301331. doi: 10.1002/anie.202301331. Epub 2023 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验