Suppr超能文献

无序蛋白聚合物的可编程性和生物医学实用性。

Programmability and biomedical utility of intrinsically-disordered protein polymers.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

出版信息

Adv Drug Deliv Rev. 2024 Sep;212:115418. doi: 10.1016/j.addr.2024.115418. Epub 2024 Jul 31.

Abstract

Intrinsically disordered proteins (IDPs) exhibit molecular-level conformational dynamics that are functionally harnessed across a wide range of fascinating biological phenomena. The low sequence complexity of IDPs has led to the design and development of intrinsically-disordered protein polymers (IDPPs), a class of engineered repeat IDPs with stimuli-responsive properties. The perfect repetitive architecture of IDPPs allows for repeat-level encoding of tunable protein functionality. Designer IDPPs can be modeled on endogenous IDPs or engineered de novo as protein polymers with dual biophysical and biological functionality. Their properties can be rationally tailored to access enigmatic IDP biology and to create programmable smart biomaterials. With the goal of inspiring the bioengineering of multifunctional IDP-based materials, here we synthesize recent multidisciplinary progress in programming and exploiting the bio-functionality of IDPPs and IDPP-containing proteins. Collectively, expanding beyond the traditional sequence space of extracellular IDPs, emergent sequence-level control of IDPP functionality is fueling the bioengineering of self-assembling biomaterials, advanced drug delivery systems, tissue scaffolds, and biomolecular condensates -genetically encoded organelle-like structures. Looking forward, we emphasize open challenges and emerging opportunities, arguing that the intracellular behaviors of IDPPs represent a rich space for biomedical discovery and innovation. Combined with the intense focus on IDP biology, the growing landscape of IDPPs and their biomedical applications set the stage for the accelerated engineering of high-value biotechnologies and biomaterials.

摘要

无规蛋白(IDP)表现出分子水平的构象动力学,这些动力学在广泛的迷人生物学现象中被功能化利用。IDP 的低序列复杂性导致了无规蛋白聚合物(IDPP)的设计和开发,这是一类具有刺激响应特性的工程重复 IDP。IDPP 的完美重复结构允许在重复水平上对可调蛋白功能进行编码。设计的 IDPP 可以模拟内源性 IDP 或从头设计为具有双物理和生物学功能的蛋白聚合物。可以合理地调整它们的性质,以研究神秘的 IDP 生物学并创建可编程的智能生物材料。为了激发多功能 IDP 基材料的生物工程,我们在这里综合了最近在编程和利用 IDPP 和含 IDPP 蛋白的生物功能方面的多学科进展。总的来说,超越了细胞外 IDP 的传统序列空间,IDPP 功能的新兴序列级控制正在推动自组装生物材料、先进药物输送系统、组织支架和生物分子凝聚物(基因编码的细胞器样结构)的生物工程。展望未来,我们强调了开放的挑战和新兴的机遇,认为 IDPP 的细胞内行为代表了生物医学发现和创新的丰富空间。结合对 IDP 生物学的强烈关注,IDPP 及其生物医学应用的不断发展为高价值生物技术和生物材料的加速工程奠定了基础。

相似文献

4
Interpreting Transient Interactions of Intrinsically Disordered Proteins.解析无序蛋白质的瞬态相互作用。
J Phys Chem B. 2023 Mar 23;127(11):2395-2406. doi: 10.1021/acs.jpcb.3c00096. Epub 2023 Mar 14.

本文引用的文献

2
De novo design of pH-responsive self-assembling helical protein filaments.从头设计对 pH 响应的自组装螺旋状蛋白丝。
Nat Nanotechnol. 2024 Jul;19(7):1016-1021. doi: 10.1038/s41565-024-01641-1. Epub 2024 Apr 3.
3
Expanding the molecular language of protein liquid-liquid phase separation.扩展蛋白质液-液相分离的分子语言。
Nat Chem. 2024 Jul;16(7):1113-1124. doi: 10.1038/s41557-024-01489-x. Epub 2024 Mar 29.
7
Design of functional intrinsically disordered proteins.功能无规卷曲蛋白质的设计。
Protein Eng Des Sel. 2024 Jan 29;37. doi: 10.1093/protein/gzae004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验