Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany.
Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany.
J Comp Neurol. 2024 Mar;532(3):e25607. doi: 10.1002/cne.25607.
Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.
许多掠食性动物,如螳螂,利用视觉来探测和捕捉猎物。螳螂特别擅长通过立体视觉估计与猎物的距离。虽然最初的视觉处理中心已经被广泛记录下来,但我们对中央大脑区域的结构知之甚少,而这些区域对于感觉运动转换和更高的大脑功能至关重要。为了弥补这一空白,我们提供了亚洲螳螂 Hierodula membranacea 中央大脑的三维(3D)重建。该图谱有助于深入分析神经元分支区域,并有助于阐明潜在的神经元通路。我们将七个 3D 重建的视觉中间神经元整合到图谱中。总共基于突触素免疫标记的全脑重建了 42 个不同的大脑皮质神经节。来自触角和下颚须的回溯填充,以及γ-氨基丁酸(GABA)和酪氨酸羟化酶(TH)的免疫标记,进一步证实了脑区的识别和边界。将神经节的组成和内部组织与果蝇(Drosophila melanogaster)的大脑解剖组织以及两种已有的多翅目昆虫脑图谱(沙漠蝗(Schistocerca gregaria)和马德拉蟑螂(Rhyparobia maderae))进行了比较。这项研究为详细分析神经元回路铺平了道路,并促进了跨物种大脑比较。我们讨论了完全变态昆虫和多翅目昆虫之间的大脑组织差异。整合到图谱中的视觉神经元的分支位点的鉴定支持了关于蝇类和螳螂复眼视叶中同源结构的先前论断。