Han Seunghee, Kang Yeonghun, Park Hyunsoo, Yi Jeesung, Park Geunyeong, Kim Jihan
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
ACS Appl Mater Interfaces. 2024 Apr 3;16(13):16853-16860. doi: 10.1021/acsami.4c01207. Epub 2024 Mar 19.
In this work, we designed a multimodal transformer that combines both the Simplified Molecular Input Line Entry System (SMILES) and molecular graph representations to enhance the prediction of polymer properties. Three models with different embeddings (SMILES, SMILES + monomer, and SMILES + dimer) were employed to assess the performance of incorporating multimodal features into transformer architectures. Fine-tuning results across five properties (i.e., density, glass-transition temperature (), melting temperature (), volume resistivity, and conductivity) demonstrated that the multimodal transformer with both the SMILES and the dimer configuration as inputs outperformed the transformer using only SMILES across all five properties. Furthermore, our model facilitates in-depth analysis by examining attention scores, providing deeper insights into the relationship between the deep learning model and the polymer attributes. We believe that our work, shedding light on the potential of multimodal transformers in predicting polymer properties, paves a new direction for understanding and refining polymer properties.
在这项工作中,我们设计了一种多模态变压器,它结合了简化分子输入线性输入系统(SMILES)和分子图表示,以增强对聚合物性质的预测。采用了三种具有不同嵌入方式的模型(SMILES、SMILES + 单体和SMILES + 二聚体)来评估将多模态特征纳入变压器架构的性能。对五种性质(即密度、玻璃化转变温度()、熔点()、体积电阻率和电导率)的微调结果表明,以SMILES和二聚体配置作为输入的多模态变压器在所有五种性质上均优于仅使用SMILES的变压器。此外,我们的模型通过检查注意力分数促进了深入分析,为深度学习模型与聚合物属性之间的关系提供了更深入的见解。我们相信,我们的工作揭示了多模态变压器在预测聚合物性质方面的潜力,为理解和优化聚合物性质开辟了一个新方向。