Suppr超能文献

AsymMirai:基于乳腺 X 线摄影的可解释深度学习模型用于 1-5 年乳腺癌风险预测。

AsymMirai: Interpretable Mammography-based Deep Learning Model for 1-5-year Breast Cancer Risk Prediction.

机构信息

From the Departments of Computer Science (J.D., L.M., A.J.B., C.R.) and Electrical and Computer Engineering (C.R.), Duke University, 308 Research Dr, LSRC Building D101, Duke Box 90129, Durham, NC 27708; Department of Radiology and Imaging Services, Emory University, Atlanta, Ga (H.T.); Department of Radiology, Harvard University, Cambridge, Mass (F.S.); and Department of Radiology, Duke University School of Medicine, Durham, NC (J.L.).

出版信息

Radiology. 2024 Mar;310(3):e232780. doi: 10.1148/radiol.232780.

Abstract

Background Mirai, a state-of-the-art deep learning-based algorithm for predicting short-term breast cancer risk, outperforms standard clinical risk models. However, Mirai is a black box, risking overreliance on the algorithm and incorrect diagnoses. Purpose To identify whether bilateral dissimilarity underpins Mirai's reasoning process; create a simplified, intelligible model, AsymMirai, using bilateral dissimilarity; and determine if AsymMirai may approximate Mirai's performance in 1-5-year breast cancer risk prediction. Materials and Methods This retrospective study involved mammograms obtained from patients in the EMory BrEast imaging Dataset, known as EMBED, from January 2013 to December 2020. To approximate 1-5-year breast cancer risk predictions from Mirai, another deep learning-based model, AsymMirai, was built with an interpretable module: local bilateral dissimilarity (localized differences between left and right breast tissue). Pearson correlation coefficients were computed between the risk scores of Mirai and those of AsymMirai. Subgroup analysis was performed in patients for whom AsymMirai's year-over-year reasoning was consistent. AsymMirai and Mirai risk scores were compared using the area under the receiver operating characteristic curve (AUC), and 95% CIs were calculated using the DeLong method. Results Screening mammograms ( = 210 067) from 81 824 patients (mean age, 59.4 years ± 11.4 [SD]) were included in the study. Deep learning-extracted bilateral dissimilarity produced similar risk scores to those of Mirai (1-year risk prediction, = 0.6832; 4-5-year prediction, = 0.6988) and achieved similar performance as Mirai. For AsymMirai, the 1-year breast cancer risk AUC was 0.79 (95% CI: 0.73, 0.85) (Mirai, 0.84; 95% CI: 0.79, 0.89; = .002), and the 5-year risk AUC was 0.66 (95% CI: 0.63, 0.69) (Mirai, 0.71; 95% CI: 0.68, 0.74; < .001). In a subgroup of 183 patients for whom AsymMirai repeatedly highlighted the same tissue over time, AsymMirai achieved a 3-year AUC of 0.92 (95% CI: 0.86, 0.97). Conclusion Localized bilateral dissimilarity, an imaging marker for breast cancer risk, approximated the predictive power of Mirai and was a key to Mirai's reasoning. © RSNA, 2024 See also the editorial by Freitas in this issue.

摘要

背景

Mirai 是一种基于深度学习的预测短期乳腺癌风险的最先进算法,其性能优于标准临床风险模型。然而,Mirai 是一个黑箱,存在过度依赖算法和误诊的风险。

目的

确定双边差异是否构成了 Mirai 推理过程的基础;利用双边差异创建简化的、可理解的模型 AsymMirai;并确定 AsymMirai 是否可以近似 Mirai 在 1-5 年乳腺癌风险预测中的性能。

材料与方法

这项回顾性研究涉及了 2013 年 1 月至 2020 年 12 月期间来自 EMory BrEast 成像数据集(简称 EMBED)的患者的乳房 X 光片。为了近似 Mirai 的 1-5 年乳腺癌风险预测,另一个基于深度学习的模型 AsymMirai 构建了一个可解释的模块:局部双边差异(左、右乳房组织之间的差异)。计算了 Mirai 和 AsymMirai 的风险评分之间的 Pearson 相关系数。对 AsymMirai 的逐年推理一致的患者进行了亚组分析。使用接收者操作特征曲线下的面积(AUC)比较了 AsymMirai 和 Mirai 的风险评分,并使用 DeLong 方法计算了 95%置信区间(CI)。

结果

该研究纳入了 81824 名患者(平均年龄 59.4 岁±11.4[标准差])的 210067 张筛查性乳房 X 光片。从深度学习中提取的双边差异产生了与 Mirai 相似的风险评分(1 年风险预测, = 0.6832;4-5 年预测, = 0.6988),并取得了与 Mirai 相似的性能。对于 AsymMirai,乳腺癌 1 年风险 AUC 为 0.79(95%CI:0.73,0.85)(Mirai,0.84;95%CI:0.79,0.89; =.002),5 年风险 AUC 为 0.66(95%CI:0.63,0.69)(Mirai,0.71;95%CI:0.68,0.74; <.001)。在 183 名患者的亚组中,随着时间的推移,AsymMirai 反复强调同一组织,AsymMirai 的 3 年 AUC 为 0.92(95%CI:0.86,0.97)。

结论

局部双边差异是乳腺癌风险的一种影像学标志物,它可以近似 Mirai 的预测能力,也是 Mirai 推理的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验