Nguyen Joseph Q, Wedal Justin C, Ziller Joseph W, Furche Filipp, Evans William J
Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States.
Inorg Chem. 2024 Apr 8;63(14):6217-6230. doi: 10.1021/acs.inorgchem.3c04462. Epub 2024 Mar 19.
The factors affecting the formation and crystal structures of unusual 6d Th(III) square planar aryloxide complexes, as exemplified by [Th(OAr)] (OAr = OCHBu-2,6-Me-4), were explored by synthetic and reduction studies of a series of related Th(IV) tetrakis(aryloxide) complexes, Th(OAr) (OAr = OCHBu-2,6-R-4). Specifically, electronic, steric, and countercation effects were explored by varying the aryloxide ligand, the alkali metal reducing agent, and the alkali metal chelating agent. Salt metathesis reactions between ThBr(DME) (DME = 1,2-dimethoxyethane) and 4 equiv of the appropriate potassium aryloxide salt were used to prepare a series of Th(IV) aryloxide complexes in high yields: Th(OAr) (OAr = OCHBu-2,6), Th(OAr) (OAr = OCHBu-2,4,6), Th(OAr) (OAr = OCHBu-2,6-OMe-4), and Th(OAr) (OAr = OCHBu-2,6-Ph-4). Th(OAr) can be reduced by KC, Na, or Li in the absence or presence of 2.2.2-cryptand (crypt) or 18-crown-6 (crown) to form dark purple solutions that have EPR and UV-visible spectra similar to those of the square planar Th(III) complex, [Th(OAr)]. Hence, the position of the aryloxide ligand does not have to be alkylated to obtain the Th(III) complexes. Furthermore, reduction of Th(OAr), Th(OAr), and Th(OAr) with KC in THF generated purple solutions with EPR and UV-visible spectra that are similar to those of the previously reported Th(III) anion, [Th(OAr)]. Although many of these reduction reactions did not produce single crystals suitable for study by X-ray diffraction, reduction of Th(OAr), Th(OAr), and Th(OAr) with Li provided X-ray quality crystals whose structures had square planar coordination geometries. Reduction of Th(OAr) with Li also gave a product with EPR and UV-visible spectra that matched those of [Th(OAr)], but X-ray quality crystals of the reduction product were too unstable to provide data. Neither Th(Odipp)(THF) (Odipp = OCHPr-2,6) nor Th(Odmp)(THF) (Odmp = OCHMe-2,6) could be reduced to Th(III) products under similar conditions. Reduction of U(OAr)(THF) with KC in the presence of 2.2.2-cryptand (crypt) was examined for comparison and formed [K(crypt)][U(OAr)], which has a tetrahedral arrangement of the aryloxide ligands. Moreover, no further reduction was observed when either [K(crypt)][U(OAr)] or [K(crown)(THF)][U(OAr)] were treated with KC or Li.
以[Th(OAr)](OAr = OCHBu-2,6-Me-4)为例,通过对一系列相关的Th(IV)四(芳氧基)配合物Th(OAr)(OAr = OCHBu-2,6-R-4)进行合成和还原研究,探索了影响异常的6d钍(III)平面芳氧基配合物形成和晶体结构的因素。具体而言,通过改变芳氧基配体、碱金属还原剂和碱金属螯合剂,研究了电子效应、空间效应和抗衡阳离子效应。利用ThBr(DME)(DME = 1,2-二甲氧基乙烷)与4当量的适当钾芳氧基盐之间的盐复分解反应,高产率地制备了一系列Th(IV)芳氧基配合物:Th(OAr)(OAr = OCHBu-2,6)、Th(OAr)(OAr = OCHBu-2,4,6)、Th(OAr)(OAr = OCHBu-2,6-OMe-4)和Th(OAr)(OAr = OCHBu-2,6-Ph-4)。在不存在或存在2.2.2-穴醚(穴醚)或18-冠-6(冠醚)的情况下,Th(OAr)可以被KC、Na或Li还原,形成深紫色溶液,其电子顺磁共振(EPR)和紫外可见光谱与平面正方形Th(III)配合物[Th(OAr)]的光谱相似。因此,无需对芳氧基配体的位置进行烷基化即可获得Th(III)配合物。此外,在四氢呋喃(THF)中用KC还原Th(OAr)、Th(OAr)和Th(OAr),产生了紫色溶液,其EPR和紫外可见光谱与先前报道的Th(III)阴离子[Th(OAr)]的光谱相似。尽管许多这些还原反应没有产生适合通过X射线衍射进行研究的单晶,但用Li还原Th(OAr)、Th(OAr)和Th(OAr)得到了具有X射线质量的晶体,其结构具有平面正方形配位几何结构。用Li还原Th(OAr)也得到了一种产物,其EPR和紫外可见光谱与[Th(OAr)]的光谱匹配,但还原产物的X射线质量晶体过于不稳定,无法提供数据。在类似条件下,Th(Odipp)(THF)(Odipp = OCHPr-2,6)和Th(Odmp)(THF)(Odmp = OCHMe-2,6)都不能被还原为Th(III)产物。为了进行比较,研究了在2.2.2-穴醚(穴醚)存在下用KC还原U(OAr)(THF)的反应,形成了[K(穴醚)][U(OAr)],其芳氧基配体呈四面体排列。此外, 当用KC或Li处理[K(穴醚)][U(OAr)]或[K(冠醚)(THF)][U(OAr)]时,未观察到进一步的还原反应。