Suppr超能文献

代表心肌灌注成像不均匀分布的新指标。

Novel indices representing heterogeneous distributions of myocardial perfusion imaging.

机构信息

Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.

Department of Nuclear Medicine/Functional Imaging and Artificial Intelligence, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

出版信息

Ann Nucl Med. 2024 Jun;38(6):468-474. doi: 10.1007/s12149-024-01920-w. Epub 2024 Mar 19.

Abstract

INTRODUCTION

Heterogeneous distribution in myocardial perfusion images (MPI) obtained by scintigraphy is often observed in cardiac diseases with normal myocardial perfusion. However, quantitative assessments of such heterogeneity have not been established. We hypothesized that the heterogeneity in MPI can be quantitatively evaluated through histogram analysis, calculating the standard deviation (SD), the 95% bandwidth (BW95%), and entropy.

METHODS

We examined resting Tc-MIBI images in 20 healthy subjects and 29 patients with cardiac disease who had none or very-mild reduced myocardial perfusion evaluated as a low summed rest score (0 to 4, the range of the studied healthy subjects). Two nuclear medicine specialists blindly divided them into two groups: non-heterogeneity or heterogeneity group, based solely on their visual assessments of heterogeneity on splash and polar maps generated from single-photon emission computed tomography (SPECT) images. The %uptake was determined by dividing the tracer count of each pixel by the tracer count of the pixel with the highest value in the LV myocardium. SD, BW95%, and entropy from histogram patterns were analyzed from the polar map data array of each %uptake. We investigated whether heterogeneity could be assessed using SD, BW95, and entropy in two groups classified by visual assessments. Additionally, we evaluated the area under the curve (AUC) to identify heterogeneity in the receiver operating characteristic curve analysis.

RESULTS

Based solely on visual assessments, 11 (22%) and 38 (78%) cases were classified into the non-heterogeneity and heterogeneity groups, respectively. The non-heterogeneity group consisted of only healthy subjects, and all patients with cardiac disease were classified into the heterogeneity group. The cases in the heterogeneity group had significantly higher values of heterogeneity indices (SD, BW95%, and entropy) in %uptake than those in the non-heterogeneity group (p < 0.05 for all). The AUCs of the heterogeneity indices were sufficiently high (AUCs > 0.90 for all) in distinguishing cases with visually heterogeneous distribution or patients with cardiac disease.

CONCLUSIONS

Heterogeneity in MPI can be evaluated using SD, BW95%, and entropy through histogram analysis. These novel indices may help identify patients with subtle myocardial changes, even in images that show preserved perfusion (345/350).

摘要

简介

在心肌灌注显像(MPI)中,即使存在正常的心肌灌注,也经常观察到放射性核素分布的不均一性。然而,对于这种不均一性的定量评估尚未建立。我们假设可以通过直方图分析来定量评估 MPI 的不均一性,计算标准差(SD)、95%带宽(BW95%)和熵。

方法

我们检查了 20 名健康受试者和 29 名患有心脏疾病的患者的静息 Tc-MIBI 图像,这些患者的心肌灌注均无明显或仅有轻度减少,总和静息评分(0 到 4,范围包括研究的健康受试者)非常低。两名核医学专家仅根据他们对闪烁图和单光子发射计算机断层扫描(SPECT)图像生成的极地图上不均一性的视觉评估,将他们分为两组:非不均一组或不均一组。通过将每个像素的示踪剂计数除以 LV 心肌中示踪剂计数最高的像素的示踪剂计数,来确定摄取率。从每个摄取率的极地图数据数组中分析 SD、BW95%和熵的直方图模式。我们研究了是否可以使用视觉评估分类的两组中的 SD、BW95%和熵来评估不均一性。此外,我们还在受试者工作特征曲线分析中评估了曲线下面积(AUC)以识别不均一性。

结果

仅基于视觉评估,将 11 例(22%)和 38 例(78%)患者分别归类为非不均一组和不均一组。非不均一组仅包括健康受试者,所有患有心脏疾病的患者均归类为不均一组。不均一组的不均一性指标(SD、BW95%和熵)在摄取率上明显高于非不均一组(所有 p<0.05)。不均一性指标的 AUC 足够高(所有 AUC>0.90),可区分视觉上分布不均一的病例或患有心脏疾病的患者。

结论

通过直方图分析,可以使用 SD、BW95%和熵评估 MPI 的不均一性。这些新的指标可能有助于识别即使在显示灌注保存的图像中(345/350)也存在细微心肌变化的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5887/11108922/978ff2f3e6e0/12149_2024_1920_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验