Huang Cheng, Ji Shuang, Chen Zhenlei, Sun Tianyi, Guo Qing, Yan Yao
IEEE Trans Haptics. 2024 Oct-Dec;17(4):650-661. doi: 10.1109/TOH.2024.3375295. Epub 2024 Dec 19.
This paper proposed linear and non-linear models for predicting human-exoskeleton coupling forces to enhance the studies of human-exoskeleton coupling dynamics. Then the parameters of these models were identified with a newly designed platform and the help of ten adult male and ten adult female volunteers (Age: years, Height: mm, Weight: kg). Comparing the coupling force error predicted by the models with experimental measurements, one obtained a more accurate and robust prediction of the coupling forces with the non-linear model. Moreover, statistical analysis of the experimental data was performed to reveal the correlation between the coupling parameters and coupling positions and looseness. Finally, backpropagation (BP) neural network and Gaussian Process Regression (GPR) were used to predict the human-exoskeleton coupling parameters. The significance of each input parameter to the human-exoskeleton coupling parameters was assessed by analyzing the sensitivity of GPR performance to its inputs. The novelty and contribution are the establishment of the non-linear coupling model, the design of the coupling experimental platform and a regression model which provides a possibility to obtain human-exoskeleton without experimental measurement and identification. Based on this work, one can optimize control algorithm and design comfortable human-exoskeleton interaction.
本文提出了线性和非线性模型来预测人机外骨骼耦合力,以加强对人机外骨骼耦合动力学的研究。然后,借助一个新设计的平台,并在十名成年男性和十名成年女性志愿者(年龄:岁,身高:毫米,体重:千克)的帮助下,确定了这些模型的参数。将模型预测的耦合力误差与实验测量值进行比较,发现非线性模型对耦合力的预测更准确、更可靠。此外,对实验数据进行了统计分析,以揭示耦合参数与耦合位置及松弛度之间的相关性。最后,使用反向传播(BP)神经网络和高斯过程回归(GPR)来预测人机外骨骼耦合参数。通过分析GPR性能对其输入的敏感性,评估了每个输入参数对人机外骨骼耦合参数的重要性。本文的新颖之处和贡献在于建立了非线性耦合模型、设计了耦合实验平台以及一个回归模型,该模型为无需实验测量和识别即可获取人机外骨骼提供了可能性。基于这项工作,可以优化控制算法并设计舒适的人机外骨骼交互。