Suppr超能文献

基于神经网络的下肢外骨骼主动干扰抑制控制。

Active Disturbance Rejection Control via Neural Networks for a Lower-Limb Exoskeleton.

机构信息

Department of Research and Multidisciplinary Studies, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico.

CONAHCYT-INAOEP, San Andrés Cholula 72840, Mexico.

出版信息

Sensors (Basel). 2024 Oct 11;24(20):6546. doi: 10.3390/s24206546.

Abstract

This article presents the design of a control algorithm based on Artificial Neural Networks (ANNs) applied to a lower-limb exoskeleton, which is aimed to carry out walking trajectories during lower-limb rehabilitation. The interaction between the patient and the exoskeleton leads to model uncertainties and external disturbances that are always present. For this reason, the proposed control considers that the non-linear part of the model is unknown and is perturbed by external disturbances, which are estimated by an active disturbance rejection control via Artificial Neural Networks. To validate the proposed approach, a numerical simulation and an experimental implementation of the ANN-Controller are developed.

摘要

本文提出了一种基于人工神经网络(ANNs)的控制算法设计,应用于下肢外骨骼,旨在进行下肢康复期间的行走轨迹。患者与外骨骼之间的相互作用会导致模型不确定性和始终存在的外部干扰。出于这个原因,所提出的控制认为模型的非线性部分是未知的,并受到外部干扰的影响,这些干扰通过人工神经网络的主动干扰抑制控制来估计。为了验证所提出的方法,开发了 ANN 控制器的数值模拟和实验实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04d7/11511477/8fcb0f3c03a5/sensors-24-06546-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验