Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
Int J Biol Macromol. 2024 Apr;265(Pt 1):130948. doi: 10.1016/j.ijbiomac.2024.130948. Epub 2024 Mar 17.
A D-optimal design was employed to optimize the microencapsulation (MEC) of basil essential oil (BEO) within a biopolymer matrix using the complex coacervation technique. BEO microcapsules (BEO-MCs) obtained under the optimal conditions exhibited high yield and efficiency with 80.45 ± 0.01 % and 93.10 ± 0.18 %, respectively. The successful MEC of BEO with an average particle size of 4.81 ± 2.86 μm was confirmed by ATR-FTIR, X-RD, and SEM analyses. Furthermore, the thermal stability of BEO-MCs was assessed using TGA-DSC analysis, which provided valuable insights into the MC's thermal stability. Furthermore, the proposed model, with a high R value (0.99) and low RMSE (1.56 %), was the most suitable one among the tested models for the controlled release kinetics of the optimal BEO-MCs under simulated gastrointestinal conditions. The successful optimization of BEO MEC using biopolymers through the D-optimal design could be a promising avenue for food and pharmaceutical industries, providing new strategies for the development of effective products.
采用 D-最优设计,通过复凝聚技术将罗勒精油(BEO)包埋在生物聚合物基质中。在最佳条件下获得的 BEO 微胶囊(BEO-MC)的产率和效率分别高达 80.45±0.01%和 93.10±0.18%。ATR-FTIR、X-RD 和 SEM 分析证实了 BEO 的成功微囊化,平均粒径为 4.81±2.86μm。此外,使用 TGA-DSC 分析评估了 BEO-MC 的热稳定性,这为 MC 的热稳定性提供了有价值的见解。此外,在所测试的模型中,提出的模型(R 值为 0.99,RMSE 为 1.56%)是最适合模拟胃肠道条件下最优 BEO-MC 释放动力学的模型。通过 D-最优设计使用生物聚合物成功优化 BEO 的微囊化,为食品和制药行业提供了一条有前途的途径,为开发有效的产品提供了新的策略。