Gédor Maud, Desandes Emmanuel, Chesnel Mélanie, Merlin Jean-Louis, Marchal Frédéric, Lambert Aurélien, Baudin Arnaud
Service en charge des données de santé, institut de cancérologie de Lorraine, 6, avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France.
Service en charge des données de santé, institut de cancérologie de Lorraine, 6, avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France; EA 4360 APEMAC, université de Lorraine, 9, avenue de la Forêt-de-Haye, 54505 Vandœuvre-lès-Nancy, France.
Bull Cancer. 2024 May;111(5):473-482. doi: 10.1016/j.bulcan.2024.01.010. Epub 2024 Mar 19.
The recruitment step of all clinical trials is time consuming, harsh and generate extra costs. Artificial intelligence tools could improve recruitment in order to shorten inclusion phase. The objective was to assess the performance of an artificial intelligence driven tool (text mining, machine learning, classification…) for the screening and detection of patients, potentially eligible for recruitment in one of the clinical trials open at the "Institut de Cancérologie de Lorraine".
Computerized clinical data during the first medical consultation among patients managed in an anticancer center over the 2019-2023 period were used to study the performances of an artificial intelligence tool (SAS® Viya). Recall, precision and F1-score were used to determine the artificial intelligence algorithm effectiveness. Time saved on screening was determined by the difference between the time taken using the artificial intelligence-assisted method and that taken using the standard method in clinical trial participant screening.
Out of 9876 patients included in the study, the artificial intelligence algorithm obtained the following scores: precision of 96 %, recall of 94 % and a 0.95 F1-score to detect patients with breast cancer (n=2039) and potentially eligible for inclusion in a clinical trial. The screening of 258 potentially eligible patient's files took 20s per file vs. 5min and 6s with standard method.
This study suggests that artificial intelligence could yield sizable improvements over standard practices in several aspects of the patient screening process, as well as in approaches to feasibility, site selection, and trial selection.
所有临床试验的招募阶段都耗时、严苛且会产生额外成本。人工智能工具可以改善招募情况,以缩短入组阶段。目的是评估一种人工智能驱动工具(文本挖掘、机器学习、分类等)在筛选和检测可能符合“洛林癌症研究所”一项正在进行的临床试验招募条件的患者方面的性能。
利用2019 - 2023年期间在抗癌中心接受治疗的患者首次就诊时的计算机化临床数据,研究一种人工智能工具(SAS® Viya)的性能。召回率、精确率和F1分数用于确定人工智能算法的有效性。在临床试验参与者筛选中,通过人工智能辅助方法所用时间与标准方法所用时间的差值来确定筛选节省的时间。
在纳入研究的9876名患者中,人工智能算法在检测乳腺癌患者(n = 2039)并可能符合纳入临床试验条件方面获得了以下分数:精确率为96%,召回率为94%,F1分数为0.95。筛选258份可能符合条件的患者档案时,人工智能辅助方法每份档案耗时20秒,而标准方法耗时5分6秒。
本研究表明,在患者筛选过程的多个方面,以及在可行性、地点选择和试验选择的方法上,人工智能可能比标准做法有显著改进。