文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤血管生长抑制的进展。

Advances in tumor vascular growth inhibition.

机构信息

State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.

出版信息

Clin Transl Oncol. 2024 Sep;26(9):2084-2096. doi: 10.1007/s12094-024-03432-5. Epub 2024 Mar 20.


DOI:10.1007/s12094-024-03432-5
PMID:38504070
Abstract

Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.

摘要

肿瘤的生长和转移需要新生血管的形成,这依赖于一系列复杂的因素,如肿瘤细胞产生各种促血管生成因子、细胞间信号传递和基质重塑。低氧、酸性的肿瘤微环境不仅有利于肿瘤细胞的增殖,还破坏了血管生成因子的平衡,导致血管异质性,进一步促进了肿瘤的发展和转移。因此,抑制肿瘤血管生成的抗血管生成策略已成为抗肿瘤治疗的一个重要焦点。传统的方法是使用抗血管生成药物通过靶向血管生成相关途径或促血管生成因子的上下游来抑制肿瘤新生血管的形成,从而抑制肿瘤的生长和转移。本文探讨了肿瘤血管生成的机制,并总结了目前用于抗肿瘤治疗的抗血管生成药物,包括单克隆抗体和小分子抑制剂,以及它们在抗肿瘤治疗中的应用进展和挑战。还概述了使用更先进的抗血管生成策略,如免疫疗法和纳米材料,治疗肿瘤的机遇和挑战。

相似文献

[1]
Advances in tumor vascular growth inhibition.

Clin Transl Oncol. 2024-9

[2]
Recent advances in anti-angiogenic therapy of cancer.

Oncotarget. 2011-3

[3]
Cancer immunotherapy of targeting angiogenesis.

Cell Mol Immunol. 2004-6

[4]
In pursuit of new anti-angiogenic therapies for cancer treatment.

Front Biosci (Landmark Ed). 2011-1-1

[5]
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.

Prog Biophys Mol Biol. 2013-10-15

[6]
An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy.

Cancer Invest. 2024-8

[7]
Anti-Angiogenic Therapy: Current Challenges and Future Perspectives.

Int J Mol Sci. 2021-4-5

[8]
Is VEGF a predictive biomarker to anti-angiogenic therapy?

Crit Rev Oncol Hematol. 2010-8-17

[9]
Targeting tumor vascularization: promising strategies for vascular normalization.

J Cancer Res Clin Oncol. 2021-9

[10]
Angiogenic signaling pathways and anti-angiogenic therapy for cancer.

Signal Transduct Target Ther. 2023-5-11

引用本文的文献

[1]
KCTD10 inhibits lung cancer metastasis and angiogenesis via ubiquitin-mediated β-catenin degradation.

Front Immunol. 2025-8-12

[2]
Investigating the role of tumor cell heterogeneity and angiogenesis genes in the prognosis of multiple myeloma.

Front Immunol. 2025-6-25

[3]
Self-Assembly Nanomedicine Initiating Cancer-Immunity Cycle with Cascade Reactions for Boosted Immunotherapy.

Chem Eng J. 2025-1-1

本文引用的文献

[1]
Application of stimuli-responsive nanomedicines for the treatment of ischemic stroke.

Front Bioeng Biotechnol. 2024-2-2

[2]
Sensitizing the Efficiency of ICIs by Neoantigen mRNA Vaccines for HCC Treatment.

Pharmaceutics. 2023-12-29

[3]
Combination Therapy and Appropriate Dosing to Target KRAS in Colorectal Cancer.

N Engl J Med. 2023-12-7

[4]
Spatiotemporally sequential delivery of biomimetic liposomes potentiates glioma chemotherapy.

J Control Release. 2024-1

[5]
Overcoming adaptive resistance to anti-VEGF therapy by targeting CD5L.

Nat Commun. 2023-4-26

[6]
Safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy of WBP216, a novel IL-6 monoclonal antibody, in patients with rheumatoid arthritis: A phase Ia randomized placebo-controlled study.

Front Immunol. 2022

[7]
Apatinib combined with camrelizumab in advanced acral melanoma patients: An open-label, single-arm phase 2 trial.

Eur J Cancer. 2023-3

[8]
Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus irinotecan in a glioblastoma mouse model.

Front Immunol. 2022

[9]
CHD4 promotes acquired chemoresistance and tumor progression by activating the MEK/ERK axis.

Drug Resist Updat. 2023-1

[10]
Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials.

Int J Nanomedicine. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索