Canale Vittorio, Skiba-Kurek Iwona, Klesiewicz Karolina, Papież Monika, Ropek Marlena, Pomierny Bartosz, Piska Kamil, Koczurkiewicz-Adamczyk Paulina, Empel Joanna, Karczewska Elżbieta, Zajdel Paweł
Faculty of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland.
Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland.
ACS Med Chem Lett. 2024 Feb 5;15(3):369-375. doi: 10.1021/acsmedchemlett.3c00536. eCollection 2024 Mar 14.
Multidrug-resistant (MDR) strains of (), prevalent in hospital environments, contribute to increased morbidity and mortality, especially among newborns, posing a critical concern for neonatal sepsis. In response to the pressing demand for novel antibacterial therapies, we present findings from synthetic chemistry and structure-activity relationship studies focused on arylsulfonamide/arylurea derivatives of aryloxy[1-(thien-2-yl)propyl]piperidines. Through bioisosteric replacement of the sulfonamide fragment with a urea moiety, compound was identified, demonstrating potent bacteriostatic activity against clinical multidrug-resistant strains (MIC and MIC = 1.6 and 3.125 μg/mL). Importantly, it showed activity against linezolid-resistant strains and exhibited selectivity over mammalian cells. Compound displayed antibiofilm-forming properties against clinical strains and demonstrated the capacity to eliminate existing biofilm layers. Additionally, it induced complete depolarization of the bacterial membrane in clinical strains. In light of these findings, targeting bacterial cell membranes with compound emerges as a promising strategy in the fight against multidrug-resistant strains.
医院环境中普遍存在的多重耐药(MDR)[具体细菌名称未给出]菌株,导致发病率和死亡率上升,尤其是在新生儿中,这对新生儿败血症构成了严重威胁。为响应新型抗菌疗法的迫切需求,我们展示了来自合成化学和构效关系研究的结果,这些研究聚焦于芳氧基[1-(噻吩-2-基)丙基]哌啶的芳基磺酰胺/芳基脲衍生物。通过用脲部分对磺酰胺片段进行生物电子等排体替换,鉴定出了化合物[具体化合物未给出],它对临床多重耐药[具体细菌名称未给出]菌株表现出强效抑菌活性(MIC[最低抑菌浓度英文缩写]和MIC = 1.6和3.125 μg/mL)。重要的是,它对耐利奈唑胺菌株有活性,并且对哺乳动物细胞具有选择性。化合物[具体化合物未给出]对临床[具体细菌名称未给出]菌株显示出抗生物膜形成特性,并证明有能力消除现有的生物膜层。此外,它能使临床[具体细菌名称未给出]菌株的细菌膜完全去极化。鉴于这些发现,用化合物[具体化合物未给出]靶向细菌细胞膜成为对抗多重耐药[具体细菌名称未给出]菌株的一种有前景的策略。